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ABSTRACT 
 
The CCHE2D-FLOOD model has been developed to simulate flood inundation due to dam and 
levee breach. The model solves the conservative form of the two-dimensional shallow water 
equations using the finite volume method. The intercell flux is computed by upwind method and the 
water-level-gradient is evaluated by weighted average of both upwind and downwind gradient. The 
model adopts the raster grid so that GIS DEM can be directly imported into the model. The 
developed model is tested with a partial dam-break problem and two real-life cases of dam-break 
flows. It is shown that the CCHE2D-FLOOD model can correctly account for complex real-life 
dam-break flows which may include discontinuities, mixed flow regimes, and irregular geometry 
and giving a satisfactory prediction of the major characteristics such as water depth, flood extent, 
and flood wave arrival time. It is also demonstrated that the model is robust, computationally 
efficient and easy to use.  
 
 
1.  INTRODUCTION 
          
Flood inundation due to dam and levee breach often cause serious loss of life and property. The 
numerical model can be used to predict flood wave propagation and provide the information about 
the flood extent, flood wave arrival time and water depth etc. Therefore, it is a useful tool for 
establishing flood control and dam operating strategies as well as developing evacuation plans and 
warning systems for the areas having potential flood risk. 
 In the present study, a two-dimensional numerical model is developed based on a finite 
volume method. The intercell flux is computed by upwind method and water-level-gradient is 
evaluated by weighted average of both upwind and downwind gradient. Therefore, the conservation 
of mass and momentum are guaranteed and the scheme is easy to implement. The proposed scheme 
is extensively tested with various examples with analytic solutions or measured data from physical 
models and field observations. This paper presents three selected test examples, including a partial 
dam-break problem and two real-life dam-break cases with complicated geometry. The numerical 
results are compared with experimental data.  
 
 
                                                 
1 Research Scientist, National Center for Computational Hydroscience & Engineering, The University of Mississippi, 
102 Carrier Hall, University, MS 38677, USA. Phone: 1-662-915-6564 Fax: 1-662-915-7796  Email: 
ying@ncche.olemiss.edu 
2 F.A.P. Barnard Distinguished Professor & Director, National Center for Computational Hydroscience & Engineering, 
The University of Mississippi, Carrier Hall Room 102, P.O. Box 1848, University, MS 38677-1848, USA. Phone: 1-
662-915-6562 Fax: 1-662-915-7796 Email: wang@ncche.olemiss.edu 



 2

2.  MODEL FORMULATION 
   
2.1  Governing Equations 
 
The conservative form of the two-dimensional shallow water equations is written as 
 

 
where U, F(U), G(U) and S(U) are respectively the vectors of conserved variables, fluxes in the x 
and y directions, and sources, defined as follows. 
 

where h = water depth; u = velocity component in the x direction; v = velocity component in the y 
direction; g = gravitational acceleration; Z = water level; C =  Chezy’s channel resistance 
coefficient. 
 
2.2  Numerical Method 
 
 
 
 
 
 
 
 
 
 
 
 
 

where Fi+1/2, j, Fi-1/2, j, Gi, j+1/2, and Gi, j-1/2 are the fluxes at the interfaces (see Figure 1). There are 
many approaches to evaluate the intercell fluxes that will construct various conservative numerical 
methods. The present model employs the one-side upwind method to evaluate the intercell fluxes. In 
order to avoid numerical oscillation and unphysical solutions, the water surface gradient in the 
source terms Sij is computed by weighted average of downwind and upwind water surface gradients 
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The proposed upwind conservative scheme is 
based on the finite volume method. The model 
employs a rectangular raster grid, as shown in 
Figure 1, in order to directly use GIS raster 
topographic data. The conserved variables are 
defined at the cell centers and represent the 
average value over each cell, while the fluxes are 
calculated at the interfaces between cells.   
        Integrating (1) over the cell ij with area of 

ji yx ∆∆  and  applying  Green’s  theorem  yields 
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Figure 1  Definition sketch of  a 
           cell centered grid 
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using the local Courant number as a biased function. The friction term is explicitly computed based 
on the approximation that the variables are piecewise constant.  
 The proposed scheme is a two-step scheme. In first step, the continuity equation is solved and 
the water depth at n+1 time step is obtained. Then, in second step, the momentum equation is solved 
and the unit discharge at n+1 time step is calculated. Both the continuity and momentum equations 
are solved explicitly. Like most explicit schemes, this scheme is subject to the Courant-Friedrich-
Lewy stability condition. The details about the numerical scheme and dry bed treatment are 
described in the references (Ying et al. 2003 and Ying et al 2004).  
 
 
3. NUMERICAL TESTS 
 
To validate the numerical model, three test examples are selected. Example 1 is a partial dam-break 
problem, which tests the performance of the model when the solution has discontinuities as well as 
the transition from subcritical flow to supercritical flow. Examples 2 and 3 are selected to test the 
model’s capability to deal with real-life problems with complicated topography. 
 
3.1 Partial Dam-Break Test Case 
 
The model is validated against the experimental data of flood wave propagation due to a partial dam-
break (Fraccarollo and Toro 1995). The reservoir is 1 m long and 2 m wide and the floodplain is 3 m 
long and 2 m wide (see Fig. 2). The breach is 0.4 m wide and located at the middle of the dam. The 
three boundaries of the floodplain are all open. In the selected case, the initial water depth in the 
reservoir is 0.6 m. The floodplain is initially dry. The bottom of the reservoir and floodplain is 
horizontal. The locations of five stations for measuring stage hydrographs are shown in Fig. 2 and 
their coordinates are listed in Table 1. 
 

Table 1. Locations of stage gauges 
 

Stations -5A C 4 0 8A 
x (m) 0.18 0.48 1.00 1.00 1.722 
y (m) 1.00 0.40 1.16 1.00 1.00 

 
 The computational domain is discretized into rectangular cells with 04.0=∆x m, 08.0=∆y m. 
Fig. 3 presents the measured results and the computed results by the current model and TVD-
MacCormack method (Tseng and Chu 2000). The overall agreement between the measured and the 
computed results is reasonable. After the sudden opening of the gate, a surge is formed and 
propagates over the floodplain. Simultaneously, a strong depression wave occurs in the reservoir and 
causes the water surface near the gate to descend drastically. Because of the effects of boundary 
reflection, water surface in the reservoir oscillates significantly in the initial stage. All these details 
are well reproduced by the numerical model.   
 
3.2  Malpasset Dam-Break Flood Simulation  
 
The Malpasset dam was located in a narrow gorge of the Reyran river valley in France.  It was a 
66.5 m high arch dam with a crest length of 223 m and the maximum reservoir capacity of 55×106 
m3. In the immediate downstream of the dam, the Reyran river valley is very narrow and has two 
consecutive sharp bends. Then the valley widens as it goes downstream and eventually reaches the 
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flat plain. The dam failed in 1959 following an exceptionally heavy rain. After the dam failure, a 
field survey was performed to obtain the maximum water levels along the river valley.   In addition, 
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Figure.2  Sketch of the experimental set-up 

of Fraccarollo and Toro (1995) and the 
locations of the measuring points. 
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Figure. 3  Results of the partial dam-break test case. 

 
a physical model with a scale of 1/400 was built to study the dam-break flow in 1964. The maximum 
water level and flood wave arrival time at 9 points along the river valley were measured.             
 A view of the river valley and locations of measuring points are shown in Figure 4. Because of 
its complex topography and availability of measured data, the Malpasset dam-break case was 
selected as a benchmark test example for dam-break models in the CADAM projects (Goutal 1999). 
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More detailed descriptions about the Malpasset dam-break test case can be found in literature (e.g. 
Goutal 1999 and Valiani et al. 2002).  
 
 
 

  
 

Figure 4.  Topography and locations of measuring points for the Malpasset dam-break case 
( ● field survey,  ○ physical model ) 

 
 In the numerical simulations, two different meshes composed of 550×220 cells (∆x = ∆y = 
30m) and 1100×440 cells (∆x = ∆y =15m) respectively, were used. The initial water level in the 
reservoir was set to be 100 m above sea level. The rest of the computational domain was considered 
as dry bed. The initial discharge in the Reyran river, estimated to be in the range from 20 to 40 m3/s, 
is neglected because it is much smaller than the flood discharge caused by the dam-break event, 
which is estimated to be the order of magnitude of 45,000 m3/s (Valiani et al. 2002). The 
topographic data used in the simulation is obtained by interpolation based on the 13541 points of 
terrain elevation data on a triangulated irregular grid, which was used in the CADAM project. The 
Manning’s coefficient was set to be 0.033 m-1/3s over the entire computational domain, as suggested 
in the CADAM project (e.g. Goutal 1999 and Valiani et al. 2002). A total and instantaneous dam 
failure is considered. The time interval ∆t = 0.5 s for the mesh with ∆x = ∆y = 30m, and ∆t = 0.25 s 
for ∆x = ∆y = 15m is used respectively in the simulation. 
 The computed water surface elevation at t = 1200 s and 2400 s after dam failure is presented in 
Figure 5. It shows that the numerical model gives a realistic prediction of the dam-break flow, 
including flooding in the downstream area as well as water receding in the reservoir area. It should 
be noted that above results are calculated with a mesh composed of 550×220 cells, that is ∆x = ∆y = 
30m; no significant difference is found between the results from the coarse mesh (∆x = ∆y = 30m) 
and the fine mesh (∆x = ∆y = 15m ).  
 In Figures 6 and 7, the computed maximum water level and wave front arrival time are 
compared with the measured data from physical model. It is shown that CCHE2D-FLOOD model 
reproduces major hydrodynamic behaviors of the flood event with reasonable accuracy. These 
figures also reveal that there is no significant difference between the results from the coarse mesh 
(∆x = ∆y = 30m) and the fine mesh (∆x = ∆y = 15m), except for the region near the dam site where 
the use of fine mesh yields better results, as shown at measurement points 6 and 7 in Figure 6. These 
figures show that the results from CCHE2D-FLOOD model are very close to the results from the 
model using approximate Riemann solvers with MUSCL approach (Valiani et al. 2002). However, 
their calculation with a final time t=2800s and 10696 cells requires 26 hours on a PC with a Pentium 
III 700 MHz CPU, while the calculation by CCHE2D-FLOOD model with the same final time and 
550×220 cells requires only 11 minutes on a PC with a Pentium III 850 MHz CPU. These results 
show that the CCHE2D-FLOOD model is accurate, robust and computationally efficient. 
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t = 2400 s 
 

Figure 5.  Water surface elevation (in meters)  
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Figure 6.  Comparison of computed maximum water level with measured data  

from physical model  
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Figure 7.  Comparison of computed wave front arrival time with measured data 
 from physical model  

 
 

 
Figure 8.  Topography of the Toce Valley and locations of stage gauges 
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the reference (Soares Frazao and Testa 1999).  In the computation, the topographic data and the 
inflow discharge hydrograph of the physical model are employed so that the numerical results can be 
directly compared with the experimental data. The computational domain is discretized into square 
cells with 05.0=∆x m, 05.0=∆y m. The Manning coefficient is 0.0162 s/m1/3, which is suggested 
by the CADAM project. The outflow boundary in the right end is set to be an open boundary. Figure 
10 shows the computed results of dam-break flow in the Toce valley at different time. At t=35 s, 
flood wave reaches the embankment of the reservoir. The water surface outside the embankment 

Inflow 
 

3.3  Dam-break flow in the Toce valley 
 
The numerical model is further validated 
against the experimental data measured in the 
physical model of a 5 km reach of the Toce 
valley located in the Northen Alps of Italy. The 
scale of the physical model is 1:100. The 
topography and locations of stage gauges are 
shown in Figure 8. Inflow discharge 
hydrograph is given in Fig.9. The valley is 
initially dry. This is a benchmark test case used 
in  the  CADAM  project.  The detailed 
description about this test case is presented in   Figure 9.  Inflow discharge hydrograph 
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(around gauge No.9) ascends due to the influence of the embankment and overtopping flow occurs. 
Subsequently, more and more water flows into the reservoir, while flood wave continues to 
propagate along the valley. At t=56.5 s, flood wave reaches the location of gauge No. 26. It is 
estimated that the computed travel time from gauge No. 1 to No. 26 is 41 s, which is very close to 
the experimental data of 40 s and more accurate than the CADAM project participants’ predictions 
of 50~58 s, as reported in the reference (Soares Frazao and Testa 1999). Figure 10 also shows that 
the water surface changes due to the deflection and reflection of irregular boundaries are well 
reproduced by the numerical model. 
 
 

 
 

Figure 10. Computed results of dam-break flow in the Toce valley 
 
 
 Figure 11 further compares the numerical results and the experimental data at 7 measurement 
points. The overall agreement between them is satisfactory. It is not surprising that there is some 
discrepancy between the numerical results and the experimental data at individual points because 
buildings and two bridges in the valley are not taken into consideration in the computation. They 
may have influences on the local flow behavior.  
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Figure 11. Comparisons between numerical results and experimental results 
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CONCLUSIONS 
 
The CCHE2D-FLOOD model is tested and validated using a partial dam-break test case and two 
real-life dam-break cases with complex topography. It is demonstrated that the model is capable to 
predict real life flood wave propagations due to dam and levee breach, which may includes 
supercritical flows, subcritical flows, transcritical flows, overtopping flows, as well as flooding and 
drying process. It is also found that the model performs well even in the case of complex 
topography.  
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