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ABSTRACT 
 
The governing equations, model closures, empirical functions and numerical methods of sediment 
transport models developed in NCCHE are briefly reviewed in this paper. Several verification and 
application examples are selected to demonstrate the capabilities of NCCHE’s models.     
 
 
1. INTRODUCTION 
 
Since its establishment in 1982, the National Center for Computational Hydroscience and 
Engineering (NCCHE) at the University of Mississippi has developed a variety of sediment 
transport models, including CCHE1D, CCHE2D, CCHE3D, and several other internal research 
models. These models have been extensively tested and widely applied to the solution of many real-
life projects in hydraulic, agricultural, and environmental engineering. Briefly presented here are 
their main features. More details can be found in related journal and conference articles, technical 
reports, and user’s manuals.   
 
 
2. GOVERNING EQUATIONS 
 
The phenomena of flow and sediment transport in rivers are characterized by turbulence, free-
surface variation, bed change, phase interaction, etc. In the time being, it is very difficult to include 
all of these effects accurately in a model for solving practical engineering problems. Therefore, 
NCCHE’s sediment transport models adopt the following assumptions:  
 (a) Sediment concentration is low enough so that the hydrodynamics of the flow is not affected 
by the sediment movements. Therefore, the clear-water flow and the sediment advection-diffusion 
equations are solved separately or decoupled. 
 (b) The time scale of bed change is much larger than that of flow movement. Therefore, at 
each time step the flow is calculated assuming a “fixed” bed.  
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 (c) Interactions among different size classes of moving sediment are ignored. Thus the 
transport of each size class of sediment is handled individually. However, the hiding and exposure 
mechanism in nonuniform bed material is considered through the introduction of correction factors 
in the nonuniform sediment transport capacity formulas. 
 (d) Empirical functions for sediment transport capacities, channel roughness coefficients, 
constants in the turbulence models, etc. are adopted to close the mathematical model into numerical-
empirical model to conduct computational simulation.  
Based upon the above assumptions, CCHE1D, 2D and 3D models for free-surface flow and 
sediment transport in general situations have been developed (Jia and Wang, 1999; Jia et al., 2001; 
Wu et al., 2004; Wu, 2004). However, for special cases such as sediment transport under dam-break 
and levee-breach flows, NCCHE has developed more complex models that denounce the above 
assumptions (a) and (b) and take into account the interactions among flow, sediment transport, and 
bed change (Wu and Wang, 2005).  
 
2.1   CCHE1D Model Equations 
 
The CCHE1D model computes the flow in dendritic channel networks with instream hydraulic 
structures by solving the St. Venant equations. CCHE1D calculates the non-equilibrium transport of 
non-uniform total-load sediment, which is governed by (Wu et al., 2004) 
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where t is the time; x is the longitudinal coordinate; A is the cross-sectional area of the flow; Ctk is 
the section-averaged total-load sediment concentration; Qtk is the actual sediment transport rate; Qt*k 
is the sediment transport capacity or the so-called equilibrium transport rate; Ls is the non-
equilibrium adaptation length of sediment transport; qlk is the side inflow or outflow sediment 
discharge from bank boundaries or tributary streams per unit channel length; each index k represents 
a sediment size class; and N is the total number of size classes.  
 The bed deformation due to size class k is determined with 
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where p′ is the bed material porosity; bA  is the cross-sectional area of the bed above a reference 
datum; and ( )kb tA ∂∂ / is the bed deformation rate caused by size class k.  
The sediment transport capacity is determined by several well-tested empirical formulas given in 
Section 3.4. These formulas are written in a general form as 
 
 *

* tkbkkt QpQ =     (k=1, 2,…, N) (3)  
 
where pbk is the availability factor of the kth size class of sediment, which is defined here as the 
percentage of size class k in the mixing layer of bed material; and *

tkQ  is the potential sediment 
transport capacity of size class k. 
 To account for the variation of bed material gradation in time and space, the bed material is 
divided into several layers at each computational node. The surface layer is the mixing layer that 
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directly participates in the exchange with the sediment moving with the flow. According to mass 
balance, the following equation for the variation of bed material gradation in the mixing layer was 
derived (see Wu et al., 2004) 
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where δm is the mixing layer thickness, which is related to bed material size or sand dune height; 

tzb ∂∂ /  is the total bed deformation rate, ( )
k

N
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1
; *

bkp  is pbk when 

0// ≤∂∂−∂∂ tzt bmδ , and *
bkp  is the percentage of size class k of bed material in the subsurface 

layer (below the mixing layer) when 0// >∂∂−∂∂ tzt bmδ . 
 
2.2   CCHE2D Model Equations 
 
CCHE2D has two versions based on the Efficient Element Method (Jia and Wang, 1999; Wu, 2001) 
and Finite Volume Method (Wu, 2004). Both adopt the following 2-D shallow water equations: 
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where x and y are the horizontal Cartesian coordinates; h is the flow depth; U and V are the depth-
averaged flow velocities in x- and y-directions; zs is the water surface elevation;  g is the 
gravitational acceleration; Txx, Txy, Tyx and Tyy are the depth-averaged turbulent stresses; Dxx, Dxy, Dyx 
and Dyy are the dispersion terms due to the nonuniformity of flow velocity and the effect of 
secondary flow, which are important in the situation of curved channels; ρ is the density of water; 

bxτ  and byτ  are the bed shear stresses, determined by 22 VUUc fbx +=ρτ  and 22 VUVc fby +=ρτ , 

with 3/12 hgnc f =  and n is Manning’s roughness coefficient; sxτ  and syτ  represent the shear forces 
acting on the water surface, usually caused by wind driving; and cf  is the Coriolis coefficient. 
 CCHE2D models compute the total-load sediment using a single governing equation or 
separately calculate the bed-load and suspended-load transport using two equations. The latter 
approach is introduced here. The depth-averaged transport equation of suspended sediment is 
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where kC  is the depth-averaged suspended-load concentration; kC*  is the suspended-load transport 
capacity or the depth-averaged suspended-load concentration at the equilibrium state; εs is the 
turbulence diffusivity coefficient of sediment, determined with cts σνε /= , in which σc is the 
turbulent Schmidt number, usually having a value between 0.5 and 1.0 or determined by using van 
Rijn’s (1989) method; skω  is the settling velocity of sediment; and α is the non-equilibrium 
adaptation coefficient.  
 In Eq. (8), xS  and yS  are the dispersion terms to account for the effect of the nonuniform 
distributions of flow velocity and sediment concentration. In the nearly straight (or slightly curved) 
channels with simple geometry, the dispersion terms are usually combined with the diffusion terms 
by adjusting the diffusivity coefficient (also called the mixing coefficient). In curved channels, due 
to the effect of helical motions, the dispersion terms become more important and are evaluated using 
the method proposed by Wu and Wang (2004a).  
 The bed-load transport is determined by  
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where bkc  is the average concentration of bed load at the bed-load zone; bkq  is the bed-load 
transport rate of size class k; kbq ∗  is the corresponding bed-load transport capacity or bed-load 
transport rate at the equilibrium state; and bxα  and byα  are the direction cosine components of bed-
load movement, which is assumed to be along the direction of bed shear. In case of curved channels, 

bxα  and byα  are corrected to consider the effects of helical motions and channel slope (Wu and 
Wang, 2004a). 
The bed deformation is calculated by  
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The suspended- and bed-load transport capacities kC*  and kbq ∗  are determined using empirical 
formulas described later. These formulas can be written in a general form similar to Eq. (3).  
The variation of bed material gradation in the mixing layer in a depth-averaged 2-D model is 
determined by Eq. (4) at each computational node. 
 
 
 
2.3   CCHE3D Model Equations 
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CCHE3D flow model solves either the full 3-D hydrodynamic equations (Reynolds equations) or the 
3-D shallow water equations. In addition, the FAST3D model (Wu et al., 2000) is used by the first 
author as a research tool, and it solves the full 3-D hydrodynamic equations. 
As shown in Fig. 1, the moving sediment is divided into suspended load and bed load and hence the 
flow domain is divided into a bed-load layer with a thickness of δ  and the suspended-load layer 
above it with a thickness of δ−h . The exchange of sediment between the two layers is through 
deposition (downward sediment flux) at a rate of bD  and entrainment from the bed-load layer 
(upward flux) at a rate of bE . The distribution of the sediment concentration in the suspended-load 
layer is governed by the following convection-diffusion equation: 
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where c is the local concentration of suspended load; and 3jδ  is the Kronecker delta with j=3 
indicating the vertical direction.  
 

 
 

Fig. 1  Configuration of Flow and Sediment Transport (Wu et al., 2000) 
 
At the free surface, the vertical sediment flux is zero and hence the condition applied is 
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At the lower boundary of the suspended sediment layer, the deposition rate is bsb cD ω=  while the 
entrainment rate bE  is 
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where ∗bc  is the equilibrium concentration at the reference level δ+= bzz , which needs to be 
determined using an empirical relation.  
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 In the 3-D model, the bed-load transport is simulated by using Eq. (9), with bxα  and byα  being 
the direction cosines of the bed shear stress known from the 3-D flow calculation. However, in case 
of steep slopes, the effect of gravity on the bed-load transport is taken into account through Wu’s 
(2004) method.  
 The bed change can be determined by either the exchange equation 
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or the overall sediment mass-balance equation integrated over the water depth h (i.e. from z = zb to 
zs).  
 
 
3.   MODEL CLOSURE AND AUXILIARY RELATIONS 
 
3.1 Turbulence Model Closures 
 
In general situations where the turbulence is approximately isotropic, CCHE2D and CCHE3D 
models use Boussinesq’s assumption to determine the turbulent stresses, in which the eddy viscosity 
is given by the parabolic eddy viscosity model, the mixing length model, the standard k-ε turbulence 
model, the RNG k-ε turbulence model, etc. To capture the turbulence-generated flow features, 
CCHE3D adopts the non-linear k-ε turbulence model (Speziale, 1987) to determine the turbulent 
stresses instead.  
 
3.2   Channel Roughness 
 
In natural rivers, the banks and bed usually have different roughness. The bank roughness elements 
include bank materials, channel training works, hydraulic structures, vegetation, etc., while the bed 
roughness elements include rigid bed materials and movable bed forms such as sand ripples, sand 
dunes, alternate bars, islands, etc. NCCHE models use van Rijn’s (1989) and Wu and Wang’s (1999) 
methods to calculate the roughness on a movable bed. However, these empirical relations may give 
different predictions at different sites or times. For a site-specific study, NCCHE models often use 
the channel roughness calibrated with the available measurement data as an alternative. If highly 
accurate predictions of flow and sediment transport processes are required, the spatial and temporal 
distributions of the roughness are identified by the optimization scheme proposed by Ding et al. 
(2004).  
 Following Shimizu and Tsujimoto (1994) and Lopez and Garcia (2001), CCHE2D and 
CCHE3D models have been implemented an alternative to account for the effect of vegetation 
roughness by considering the drag force interaction between fluid and vegetation in the momentum 
equations and the turbulence generated by vegetation in the k and ε equations. After the effect of 
vegetation on the flow is considered, its effect on sediment transport and channel morphology 
change can also be simulated (Wu et al., 2005). 
 
3.3   Non-equilibrium Adaptation Length 
 
The non-equilibrium adaptation length Ls, which characterizes the distance for sediment to adjust 
from a non-equilibrium state to an equilibrium state, is a very important parameter in the non-
equilibrium transport approach used in NCCHE models. For suspended load, )/( sks UhL αω= . The 
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coefficient α is calculated with Armanini and di Silvio’s (1988) method. Values of α calculated 
from this method or other similar methods in the literature are usually larger than 1. However, in 
practice, α has been given different values by many researchers, most of them being less than 1. 
Based on results obtained from validation tests in many reservoirs and rivers, it has been suggested 
that α=1 for the case of strong erosion, α=0.25 for strong deposition, and α=0.5 for weak erosion 
and deposition in 1-D model (Han, 1980; Wu et al., 2004).  
 For bed load, the non-equilibrium adaptation length is related to the dimensions of sediment 
movements, bed forms, and channel geometry. Wu et al. (2004) suggested that it takes the value of 
the length of the dominant bed forms, such as sand dunes in laboratory cases and alternate bars in 
field cases. This suggestion has given very promising results in a series of applications.  
For bed-material load, the non-equilibrium adaptation length is set as the larger of the adaptation 
lengths computed for bed load and suspended load. For wash load, the adaptation length Ls is 
assumed to be infinitely long and then no sediment exchange exists near the bed. 
 
3.4   Non-cohesive Sediment Transport Formulas 
 
The nonuniform sediment transport capacity is determined using Wu, Wang and Jia’s formula 
(2000), the modified Ackers and White’s (1973) formula (Proffit and Sutherland, 1983), modified 
Engelund and Hansen Formula (Wu and Vieira, 2002), SEDTRA module (Garbrecht et al., 1995) in 
CCHE1D and CCHE2D models. All these formulas have considered the hiding and exposure 
mechanism in nonuniform sediment transport. Ribberink et al. (2002) and Wu and Wang (2003) 
found that Wu, Wang and Jia’s (2000) formula performs best among the tested formulas. The 
equilibrium near-bed concentration of suspended load in CCHE3D model is determined using the 
method proposed by van Rijn (1989).  
 
3.5   Cohesive Sediment Transport Formulas 
 
CCHE2D model simulates the cohesive sediment transport with special consideration of 
flocculation, settling, transport, erosion, deposition and consolidation processes. The transport of 
cohesive sediment is treated as suspended load and governed by Eq. (8). The size of flocs and in turn 
the settling velocity is related to the particle size, sediment concentration, salinity, and turbulence 
intensity. The settling velocity of the flocs is determined by (Wu and Wang, 2004b) 
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where fω  is the representative settling velocity of the flocs; 50dω  is the settling velocity of single 
particles corresponding to the median size 50d  of the sediment mixture; dK , sK , saK  and tK  are the 
correction factors accounting for the influences of sediment size, sediment concentration, salinity, 
and turbulence intensity, respectively. 
 The erosion rate is determined using Partheniades’ (1965) linear relation or Gailani et al.’s 
(1991) power function. The deposition rate is calculated using Mehta and Partheniades’ (1975) 
formula. The decrease in bed elevation due to the consolidation is determined by 

 
dt

dH
dt

dH d

d

ρ
ρ

−=  (16) 

 



 

 

8

where H is the thickness of the deposited cohesive sediment; and dρ  is the mean dry density of the 
deposit. 
 
3.6   Local Scour near In-stream Structures 
 
The three-dimensional flow features, such as the downward flow, horseshoe and wake vortices, and 
the localized pressure gradient, are all important in the development of local scour near in-stream 
structures. Considering the effects of these three-dimensional flow features, Dou (1997), Jia et al. 
(2001), and Wu and Wang (2004c) have attempted to extend the capability of general sediment 
transport formulas to the local scour simulation near bridge piers, abutments and spur-dykes as well 
as the headcut.  
 
3.7   Sediment Transport on Steep Slopes 
 
For the channels with steep slopes, the effect of the gravity on sediment transport is an important 
factor. Two approaches have been applied to consider this effect in the sediment transport capacity 
function in the form of ( )cbb fq ττ=∗ , where bτ  is the bed shear stress and cτ  is the critical shear 
stress for the incipient motion of bed material. One is to correct the critical shear stress cτ  using the 
method of Brooks (1963) or van Rijn (1989). This approach has been used to modify such as van 
Rijn’s (1989) formula. The other is to add the streamwise component of the gravitational force to the 
bed shear bτ  without modifying cτ  (Wu, 2004) 
 
 φϕτλττ sinsin0 cbbe +=  (17) 
 
where beτ  is the effective tractive force; ϕ  is the bed angle with the horizontal, with positive values 
denoting downslope bed; φ  is the repose angle; and 0λ  is a coefficient related to flow and sediment 
conditions as well as the bed slope (Wu, 2004). Eq. (17) has been used to modify Wu, Wang and 
Jia’s (2000) formula,  
The gravity also affects the direction of bed-load transport.  As suggested by Wu (2004), the 
parameters bxα  and byα  in Eq. (9) are replaced by ebx,α  and eby,α  that are determined as 
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where xϕ  and yϕ  are the bed angles along x- and y-directions. 
 
3.8   Effect of Helical Flow Motions on Sediment Transport in Curved Bends  
 
Helical (secondary) motions in curved channels play an important role in the evolution of channel 
morphology, inducing deposition along the inner bank and erosion along the outer bank. This 
phenomenon can be simulated by the CCHE3D model and FAST3D model (Wu et al., 2000). 
However, for saving computing time, following Flokstra (1977), Wu and Wang (2004a) have 
modified the CCHE2D model to include the effect of the helical motions. The dispersion terms in 
Eqs. (6)-(8) are determined by the linear model that uses the following algebraic equation for the 
vertical distribution of the helical flow velocity  
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the logarithmic or power distribution for the stream-wise flow velocity, and the Rouse distribution 
or Lane-Kalinske distribution for the suspended-load concentration along the depth. In Eq. (19), nu  
is the local velocity in the cross-stream direction; sb  is the coefficient with a value of about 6.0; Un 
is the depth-averaged velocity in the cross-stream direction; I is the intensity of helical motions. 
Theoretically, rhUI s=  in the channel centerline (Rozovskii, 1957). Here, r is the local radius of 
curvature. For the entire channel bend, de Vriend (1981) proposed a differential transport equation 
to determine the intensity I. Wu and Wang (2004a) simplified this differential equation into an 
algebraic formula for the helical flow intensity in the fully developed region. In addition, the 
methods proposed by Engelund (1974) and Odgaard (1981) are used to account for the effect of the 
helical flow on the bed-load transport direction.  
 
3.9   Bank Erosion and Mass Failure 
 
Bank erosion is the main cause of channel widening and meandering. To realistically model the 
morphological evolution of channels with movable banks, both bed and bank changes should be 
simulated (Duan et al., 2001; Wu and Vieira, 2002). For non-cohesive banks, bank collapses when 
the slope angle is larger than the repose angle. Thus the retreat of non-cohesive banks is simulated 
by imposing the repose angle in NCCHE models. For cohesive banks, the lateral fluvial erosion at 
bank toes is calculated using Arulanandan et al.’s (1980) empirical relationship, and bank mass 
failure is simulated using Osman and Thorne’s (1988) algorithm. 
 
3.10 Integration of Channel and Watershed Models  
 

 
 

Fig. 2  Integration of Channel and Watershed Models 
CCHE1D has been designed for integration with the watershed model AGNPS (and SWAT) (Wu 
and Vieira, 2002). This integrated modeling system includes three components: landscape analysis, 
watershed modeling, and channel simulation, as shown Fig. 2. The landscape analysis program 
TOPAZ is used to extract the channel network and the corresponding subcatchments based on the 
elevation data from a Digital Elevation Model. The watershed model computes daily runoff and 
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sediment yield for each subcatchment. The channel model simulates the flow and sediment transport 
in the channel network using the boundary conditions provided by the watershed model.  
 
 
4.   NUMERICAL METHODS 
 
The NCCHE sediment transport models are solved by very efficient numerical schemes based on the 
efficient element method (EEM), finite difference method (FDM), and finite volume method (FVM). 
CCHE1D adopts the traditional Preissmann’s implicit scheme for the common flows in natural 
rivers and the newly-developed Ying et al.’s (2003) explicit scheme for dam-break type flows. 
CCHE2D and CCHE3D models adopt the fully implicit schemes for the temporal derivative terms, 
and discretize the convection terms using upwind schemes, such as hybrid upwind/central difference 
scheme, exponential difference scheme, the upwind interpolation scheme (Wang and Hu, 1992), 
QUICK scheme, HLPA scheme, and SOUCUP scheme (Zhu, 1992). The latter two schemes are of 
second-order accuracy and without numerical oscillations. The sediment transport models are driven 
by flow simulation engines that adopt many advanced computation techniques with high efficiency, 
such as the projection method and SIMPLEC algorithm for 2-D and 3-D hydrodynamic models. The 
2-D and 3-D discretized governing equations are solved by using Strongly Implicit Procedure (SIP), 
and the 1-D equations are by the Thomas algorithm. These solvers have fast convergence.  
 In addition, a semi-coupling procedure is used in NCCHE models, in which the flow and 
sediment calculations are decoupled but the sediment transport, bed change and bed material sorting 
calculations are coupled in the sediment modules, as shown in Fig. 3. This semi-coupling procedure 
has been found to be very stable and efficient computationally.  
 

 
 

Fig. 3  Semi-Coupling Procedure for Flow and Sediment Calculations 
 
 
5.   MODEL VERIFICATIONS AND APPLICATIONS 
 
All NCCHE sediment transport models have been verified and validated comprehensively using 
analytic solutions, laboratory experiments, and field measurements, following the procedure 
suggested by the ASCE Task Committee on 3D Free Surface Flow Model Verification and 
Validation (Wang, 2005). After well verified, NCCHE models have been widely applied to a variety 
of cases with success. A few examples are given below.  
 
Case 1:  Integrated Watershed-Channel Simulation in Goodwin Creek 
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The Goodwin Creek watershed in Mississippi is an experimental watershed in the USA, which has 
been monitored continuously since 1978. Fig. 4(left) shows the comparison of the calculated and 
measured thalweg changes of the main channel from 1978 to 1992.  Fig. 4(right) shows the 
comparison of the calculated and measured annual sediment yields at the watershed outlet. The 
reasonable agreement proves that computational model, CCHE1D, is capable of simulating long-
term morphological changes of a stream.   

      
 

Fig. 4  Sediment Transport in the Goodwin Creek Watershed:  
(left) Thalweg Changes; (right) Sediment Yields at Outlet 

 
Case 2: Vegetation Effect on Fluvial Processes in Little Topashaw Creek 
 
The FVM-based CCHE2D model has been used to investigate the effect of the manmade large 
woody debris structures on the fluvial processes in the Little Topashaw Creek, Mississippi (Wu et 
al., 2005). Fig. 5(left) shows the photo of the study site, and Fig. 5(right) shows the simulated bed 
change during 2001-2002 after the structures were constructed. One can see that sediment deposition 
occurred along the outer bank where the structures located, while erosion occurred in the main 
channel. The simulated results are in reasonably good agreement with measurement data. 
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Fig. 5  Large Woody Debris Structures in the Little Topashaw Creek: 

(left) Photo facing upstream; and (right) Simulated Bed Change 
 
Case 3: Cohesive Sediment Transport in Gironde Estuary  
 
The FVM-based CCHE2D model was applied to simulate the tidal flow and cohesive sediment 
transport in the Gironde Estuary, France. To account for the effect of salinity on cohesive sediment 
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transport, the salinity transport was also computed. Fig. 6 shows the comparison of the simulated 
and measured tidal levels, salinities, and sediment discharges in May 19-22, 1974. The simulation 
results agree well with the measurement.   
 

 
 

Fig. 6  Tidal Flow, Sediment and Salinity Transport in Girond Estuary 
 
 
6.  CONCLUSIONS 
 
Sediment transport modeling has been advanced significantly over the past two decades in NCCHE. 
The three-dimensional models can simulate the detailed flow characteristics of complex situation, 
e.g. the turbulent flow in a highly irregular river bendway with spur dikes and submerged weirs, the 
local scour development in time around bridge piers and abutments, etc. The two-dimensional 
models have been successfully applied to the predictions of flood flows due to over topping of river 
banks, dam break or levee breach caused by heavy rain storms, the selection of designs for river 
restoration projects by a variety of techniques including the utilization of vegetations and hydraulic 
structures in stream or along the banks, etc. The one-dimensional models are being used in assessing 
long-term sediment and/or pollutant transport in streams and channel networks, predicting the total 
maximum daily loads in a catchment or watershed, evaluating the effectiveness of erosion control 
structures from long-term point of view, and many other cases. These models are becoming the 
predictive tools in decision support systems, which are to have wider and wider applications in 
policy making, management planning and engineering designs to select the best management 
practices and the optimal design to satisfy all constraints of environment, ecology, political/legal 
systems, social/cultural concerns, etc. There is no doubt that NCCHE’s sediment transport models 
are to be more and more widely adopted by engineers and practitioners.  
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 NCCHE sediment transport models will be continuously improved and upgraded using the 
newly proved sediment transport theories, the newly found empirical functions, the newly developed 
numerical solution methods, the newly collected laboratory and field measurement data, the newly 
developed information technologies, etc. Furthermore, the sediment transport models will be 
integrated in greater extents with the other models, such as ecosystem model, water quality model, 
pollutant transport model, even economic, management, social systems models, etc. for better 
analysis and solution of the global or regional problems encountered in real-life engineering. 
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