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ABSTRACT 
 
This paper presented a general, simple, stable, and accurate numerical method for numerical 
simulation of flow and transport. It could be an explicit or implicit scheme.  

As a general numerical scheme, it can handle a complicated flow such as dam break, 
transcritical flow, supercritical flow, subcritical flow, tide flow, wave flow, free surface flow and 
non-free surface flow for 1D, 2D, 3D cases. 
 
 
1. INTRODUCTION 
 
With economic development and living standard rising, the water resource and sedimentation 
problem is becoming a critical element in the economic feasibility and human activity in China. In 
west China, more and more, water is becoming a rare resource for drinking, agriculture, and 
industry. And in coastal region harbors are of vital importance for the economy. The increasing draft 
of vessels requires dredging of deep-draft channels connecting port to deep water, for example in 
Yantze river estuary, the dredging ships work day and night to dredge the navigation channel from 
8.00(m) depth to 12.50(m) depth. In many situations engineering structures are required to stabilize 
the shoreline, shoals and inlets, to reduce sedimentation, and to prevent erosion. In a lot of coastal 
city of China, a lot of human made lands are built up by filling ocean with earth and rock since land 
is rare resource and very valuable, and its sequence and influence to flood and ecological system 
should be evaluated. Coastal protection against surges due to windstorms or earthquakes is one of 
the most basic problems in many estuaries since the recent big Tsunami killed huge number of 
people in Asian. With the shortage of oil, the hydraulic power generation construction is booming 
up in China, the side effect attracts lot of attention for dam building. Those side-effects include loss 
of reservoir storage due to sediment deposition, erosion of the river bed downstream of the 
reservoir, and damage of downstream river bank due to sediment concentration decline, decline of 
navigation condition due to navigable water depth unsteadily change and decline of water quality. 
With more high way constructed, more and more bridges are built up cross the river, bay and coastal 
region, therefore the local and general scour around bridge pier should be paid attention for bridge 
safety. The ecology and environment problem, coming from the human interference in hydraulic 
system, is another big issue for any water and sediment related engineering project. Unfortunately, 
the turbulence and sedimentation processes in rivers and coastal regions are among the most 
complicated and least understood phenomena in nature currently. As one of research tool, 
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mathematical models are more often used to solve engineering problems combining with field 
measurement data due to the fact that mathematical models are easy to apply, low cost, and time 
efficient. 

But currently, the numerical models for flow and sedimentation have limitations. The 
numerical methods, used in the discretion of partial differential equations, are the finite element 
model, finite different model, finite volume model, finite analytical model, efficient element model, 
Alternating Direction Implicit (ADI) model, etc. The problem is that for all the numerical methods 
mentioned above no one can handle all flow and sedimentation processes such as 1D、2D、3D, sub 
critical flow, supercritical flow, tide and wave flow. The turbulence and sediment transport 
equations contain the convection and diffusion terms. Generally central difference type scheme is 
used to discrete the diffusion terms. Convection terms are usually handled by using the upwind 
scheme for stabilizing the numerical scheme. Analysis shows that upwind scheme is very stable but 
introduces artificial diffusivity to numerical scheme and makes the numerical solution distorted. 
Hybrid upwind/central scheme, exponential difference scheme, the finite analytical scheme, upwind 
interpolation scheme and quick scheme belong to the same type of upwind scheme. Another 
problem for upwind scheme is that it is hard to keep the conservation of energy, conservation of 
momentum and conservation of mass when the flow field changes its direction such as in tidal flow. 
Due to the constrain of mathematical modals for flow and sedimentation, their successful   
application for engineering problems relies strongly upon experts’ experience. 

Developing a numerical scheme, a general numerical scheme for all flows and transport 
situation adopted and numerical diffusion free, is the goal for all researchers working in field of 
numerical modeling of flow and sedimentation [Yuanya Li, 2005]. It is also the objective of this 
paper. 
 
 
2. THE PARTIAL DIFFERENTIAL EQUATIONS 
 
2.1 1D equations 
 
The 1D Saint-Venant equations for flood wave propagation in rivers and channels, where water 
stages and flow-rates at different locations along the river or channel and at different time instance 
are the main concern, are 
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in which A  is the river cross section area;Q  is the discharge; g  is the discharge flowing from a river 
branch; z  is the water level; R  is the hydraulic radius; C  is Chezy coefficient; xV  is the flowing 
velocity projected in the main river flow direction for river branch; 

The transport equation of sediment or salinity is 
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in which c  is the concentration of sediment or salinity and *S  is the source term. 
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2.2 2D equations 
 
For D2  depth-averaged equations, usually used in lakes and oceans where the horizontal 
dimensions are much larger than the vertical one, the continuity equation is: 
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the dynamic equation are 
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in whichξ  is the water level; h  the water depth; vu,  is the velocity component in x and y direction 
respectively, t  is time; ( )ϕsin2wf =  is a coefficient, w  is the earth angle velocity and ϕ  is 
geographic latitude. 

The 2D transport equation of sediment or salinity is 
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in which c  is the concentration of sediment or salinity and 2S  is the source term. 
 
2.3 3D equation 
 
The 3D Continuity equation is 
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The 3D dynamic equation are 
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On the free surface, there is a kinematic condition or constraint: 
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in which vu, and w  present the velocity components in yx,  and z direction respectively; ρ is the 
fluid density, C is the sound speed in water, p stands for pressure and tυ  is the turbulent viscosity. 

The 3D transport equation of sediment or salinity is 
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in which c  is the concentration of sediment or salinity, ω  is the falling velocity and sυ  is the 
turbulent viscosity. 
 
2.4 Wave equation 
 
For open shallow water the wave impact on sediment movement couldn’t be neglected in lakes and 
coastal regions. It is a critical element for harbors and navigation projects for the seabed composed 
with fine sand. The non-linear wave propagation equations for shallow water are the modified 
Boussinesq equations: 
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in which η  is the wave height, dh +=η , hUP = , hVQ = , U and V  is the depth-averaged 
velocity in x and y direction respectively.  
 
3. EIGENVALUE OPERATOR SPLIT CONTROL VOLUME METHOD FOR 1D, 2D 

AND 3D FLOW AND TRANSPORT  
 
3.1 Operator Split For Partial Differential Equations 

 
The idea of operator split for partial differential equations is dividing a comprehensive multi-
direction partial differential equation, containing convective terms, diffusion terms, source terms 
and cross direction derivative terms, into a group of sub partial differential equations. For each sub  
partial differential equation, it only has convective terms in one direction or source term and 
diffusion terms in all direction. The cross direction derivative terms also are treated as convective or 
diffusion type terms. For all diffusion terms, the central differential scheme is used. The main 
concern focuses on the Euler type convective equation. As an example the sub partial differential 
equations related to convective term for equation (9) are 
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3.2 Eigenvalue For Convective Equations 
 
For general purpose, a convective term related to 1D, 2D, 3D partial differential equations can be 
written as [Yuanya Li, 2005] 
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in which U  is the vector with m elements, and F is also a vector with m elements. Equation (20) 
can be rewritten as  
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is Jacobean matrix, the Jacobean matrix has eigenvalue ( )ml ,,2,1 Ll =λ , and corresponding 
eigenvector matrix P  
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So Eq.(21) can be replaced by m independent linear partial differential equations 
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backward differential numerical scheme to discrete the convective term in the equation, one obtains 
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Assuming that the boundary condition is a period, the solution for equation (25) can be written as a 
Fourier series  
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in which )(tv is Fourier coefficient. Replacing equation (25) with equation (26), the common 
difference equation to satisfy Eq. (25) is 
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The solution for Eq. (27) is 
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If the solution is accountable, then the solution is stable. If the solution is accountable, the real part 
for σ  must be less than zero. It means 0Re ≤σ . Therefore it asks that 0>λ . It means that when 
elgenvalue is positive, the backward difference scheme (upwind scheme ) makes the solution stable.  
Using the forward difference scheme, Eq. (24) can be written as 
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Doing the stability analysis as before, it reads 
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If the solution is accountable, the real part for σ  must be less than zero. It means 0Re ≤σ . 
Therefore, it asks that 0<λ . It means that when eigenvalue is negative, the forward difference 
scheme makes the solution stable.  

From the analysis mentioned above, a very important conclusion can be obtained that the often 
used Preismann’s four-point implicit scheme, and TVD scheme may have a instable problem for 
numerical simulation of transcritical flow such as hydropower generation dam adjustment flow, dam 
beak flow, etc. 
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3.3 Flux Operator Split 
 
It can be proven that Eq. (23) has the eigenvalues 
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For a free surface flow 
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The flux split scheme is  
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Figure 1.  Control volume and its boundary 
 

The first step is integrating the Eq. (20) for the whole control volume by freezing the right boundary  
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Second step, integrating the equation (20) for whole control volume by freezing left boundary  
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the final solution is 
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It can be proven that the accuracy to )(1 iU n+  is ),( 33 txO ∆∆ . Using flux split expression of Eq. (38), 
Eq. (40) and (42) can be written as 
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3.4 Determination Of Numerical Schemes By Eigenvalues 
 
1) When the eigenvalue ,0>u  1F  uses the upwind differential scheme either first order or second 

order(QUICK type scheme); 
2) When the eigenvalue 0>+ cu , 2F  uses the upwind differential scheme either first order or 

second order(QUICK type scheme); 
3) When the eigenvalue 0>− cu (supercritical flow), 3F  uses the upwind differential scheme 

either first order or second order(QUICK type scheme); 
4) When the eigenvalue 0<− cu (subcritical flow), 3F  uses the downwind differential scheme 

either first order or second order(QUICK type scheme); 
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3.5 Time March By Explicit Scheme Or Implicit Scheme 
 
For an explicit scheme, Eq. (44) and (45) can be written as 
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For an implicit scheme, Eq. (44) and (45) can be written as 
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Assembled the solutions of convective terms, diffusion terms and source terms, the 1D, 2D and 3D 
flow and transport problems can be solved for all situations. 
 
 
4. MODEL VERIFICATION AND APPLICATION 
 
4.1 1D Case Verification 
 
The computational domain for a 1D case is from Shuifu Dam to Luzhou city, in the upper Yangtze 
river where bars and pools are alternatively located and the supercritical and subcritical flow are 
alternate. The Minjiang river and Jingsha river are the inlet boundary and Luzhou city is the outlet 
boundary. The total length is 165 kilometers.  
 

 
 

Figure 2. Schematic plan of upper Yangtze River 
 
4.2 2D Case For General Erosion Of Bridge Pier 
 
The 2D numerical model verification case is located in the Jiaozhou bay. A bridge with more than 
430 bridge piers is designed to cross the bay. The general erosion around the bridge pier due to the 
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tidal current, wave and water surge of hurricane is predicated by the 2D numerical model. 
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         Figure 3. Inlet discharge boundary                                Figure 4. Yibing water level verification 
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Figure 5. Li village water level verification               Figure 6. Li village velocity verification 
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      Figure 7. The water surface distribution                     Figure 8. The discharge distribution 
 
4.3  3D Case For Local Scour Of Bridge Pier 
 
Figure 11 shows the simulated local scour pattern around the main pier of Dagu bridge under the 
action of tidal current and hurricane waves. It is an initial result to simulate local scour for a real 
bridge pier. The mesh size is 0.5m×0.5m. The wave height is 2.5m and the wave period is 5.4s. 
The result is reasonable. More sophistical result depends upon finer mesh. 
 
 
5. SUMMARY 
 
The numerical method presented in this paper is of accuracy in order ),( 33 txO ∆∆  and based on a 
solid theoretical analysis. Its time march scheme can be either implicit or explicit, and the space 
differential scheme could be either first order or second order (QUICK type scheme). Due to its 
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accuracy, stability, simplicity and efficiency, all complicated flow and transport related engineering 
problems may be solved with one numerical scheme, short computer time and more accuracy. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
                    Figure 9. The simulated velocity vector field for Jiaozhou Bay 
 
 

 
 

Figure 10. Simulated general erosion around the bridge piers of Dagu bridge 
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Figure 11. Simulated local scour around the main bridge pier of Dagu bridge 
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