- 1. Introduction
- 2. Discretization
- 3. Generalized formulation
- 4. Temporal Finite Difference Approximation

1. Introduction

• Reduction of a differential equation \rightarrow algebraic equation.

• Is the approximation solution a good solution?

$$|u - U| < \varepsilon$$

2. Discretization

The definition for the derivation of a continuous function u(x) is

$$\frac{du}{dx} = \lim_{h \to 0} \frac{u(x+h) - u(x)}{(x+h) - x} = \lim_{h \to 0} \frac{u(x+h) - u(x)}{h}$$

without the limit process we can get the finite difference approximation

$$\frac{du}{dx} = \frac{u(x+h)-u(x)}{h}$$

choose the location of x and x+h to coincide with the node points

$$\left. \frac{du}{dx} \right|_{x_i} \approx \frac{u(x_i + h) - u(x_i)}{(x_i + h) - x_i} = \frac{u_{i+1} - u_i}{x_{i+1} - x_i}$$

A derivative does not have a unique finite difference approximation. du/dx can be written as:

$$\left. \frac{du}{dx} \right|_{x_i} \approx \frac{u_{i+1} - u_i}{x_{i+1} - x_i} \quad \text{or} \quad \left. \frac{du}{dx} \right|_{x_i} \approx \frac{u_i - u_{i-1}}{x_i - x_{i-1}} \quad \text{or} \quad \left. \frac{du}{dx} \right|_{x_i} \approx \frac{u_{i+1} - u_{i-1}}{x_{i+1} - x_{i-1}}$$

$$\left. \frac{du}{dx} \right|_{x_i} \approx \frac{u_i - u_{i-1}}{x_i - x_{i-1}}$$

$$\left. \frac{du}{dx} \right|_{x_i} \approx \frac{u_{i+1} - u_{i-1}}{x_{i+1} - x_{i-1}}$$

2. Discretization:formulas by Taylor series expansion(i) series expansion

$$u(x + \Delta x) = u(x) + \Delta x \frac{d}{dx} u(x) + \frac{\Delta x^2}{2!} \frac{d^2}{dx^2} u(x) + \frac{\Delta x^3}{3!} \frac{d^3}{dx^3} u(x) + \dots + \frac{\Delta x^{n-1}}{(n-1)!} \frac{d^{n-1}}{dx^{n-1}} u(x) + R_n$$

R is a remainder term defined as $R_n = \frac{\Delta x^n}{n!} \frac{d^n}{dx^n} u(x)$

$$R_{n} = \frac{\Delta x^{n}}{n!} \frac{d^{n}}{dx^{n}} u(x)$$

An approximating finite difference expression for node point i+1 is

$$u_{i+1} = u_i + \Delta x \frac{d}{dx} u_i + \frac{\Delta x^2}{2!} \frac{d^2}{dx^2} u_i + \frac{\Delta x^3}{3!} \frac{d^3}{dx^3} u_i + R_4$$

re-arrange the equation
$$u_{i+1} = u_i + \Delta x \frac{du_i}{dx} + R_2 \implies \frac{du_i}{dx} = \frac{u_{i+1} - u_i}{\Delta x} + R_2$$

the finite difference expression for node point i-1 is

$$u_{i-1} = u_i - \Delta x \frac{du_i}{dx} + \frac{\Delta x^2}{2!} \frac{d^2 u_i}{dx^2} - \frac{\Delta x^3}{3!} \frac{d^3 u_i}{dx^3} + R_4 \implies \frac{du_i}{dx} = \frac{u_i - u_{i-1}}{\Delta x} + R_2$$

2. Discretization:formulas by Taylor series expansion(ii) series expansion

$$u_{i+1} = u_i + \Delta x \frac{du_i}{dx} + \frac{\Delta x^2}{2!} \frac{d^2 u_i}{dx^2} + \frac{\Delta x^3}{3!} \frac{d^3 u_i}{dx^3} + R_4$$

$$u_{i+1} = u_i + \Delta x \frac{du_i}{dx} + \frac{\Delta x^2}{2!} \frac{d^2u_i}{dx^2} + \frac{\Delta x^3}{3!} \frac{d^3u_i}{dx^3} + R_4 \qquad u_{i-1} = u_i - \Delta x \frac{du_i}{dx} + \frac{\Delta x^2}{2!} \frac{d^2u_i}{dx^2} - \frac{\Delta x^3}{3!} \frac{d^3u_i}{dx^3} + R_4$$

the approximation to d^2u/dx^2 is obtained by elimination of du/dxbetween the above equations

$$\frac{d^{2}u}{dx^{2}} = \frac{u_{i+1} - 2u_{i} + u_{i-1}}{\Delta x^{2}} + R_{4}$$

- the finite difference approximation truncates the series, leading to the truncation error, TE, defined as the difference between the true derivative and the finite difference approximation to it.
- **TE** is due to higher-order terms in Taylor series neglected in finite difference approximations.

- 2. Discretization:formulas by Taylor series expansion(iii)
- **TE** for the finite difference expressions du/dx are

$$\frac{du}{dx}\Big|_{x_i} - \frac{u_{i+1} - u_i}{\Delta x} = -\frac{\Delta x}{2!} \frac{d^2 u_i}{dx^2} - \frac{\Delta x^2}{3!} \frac{d^3 u_i}{dx^3} - R_3 = O(\Delta x) \quad \frac{du}{dx}\Big|_{x_i} - \frac{u_i - u_{i-1}}{\Delta x} = -\frac{\Delta x}{2!} \frac{d^2 u_i}{dx^2} + \frac{\Delta x^2}{3!} \frac{d^3 u_i}{dx^3} - R_3 = O(\Delta x)$$

$$\frac{du}{dx}\bigg|_{x_i} - \frac{u_{i+1} - u_{i-1}}{2\Delta x} = -\frac{\Delta x^2}{2 \cdot 3!} \frac{d^3 u_i}{dx^3} - \frac{\Delta x^4}{2 \cdot 5!} \frac{d^5 u_i}{dx^5} - R_7 = O(\Delta x^2)$$

- The order of the approximation $O(\Delta x^2)$: the lowest order tern in TE
- **TE** for d^2u/dx^2 is $\left| \frac{d^2u}{dx^2} \right| = \frac{u_{i+1} 2u_i + u_{i-1}}{\Delta x^2} = \frac{\Delta x^2}{4!} \frac{d^4u_i}{dx^4} \frac{\Delta x^4}{6!} \frac{d^6u_i}{dx^6} R_8 = O(\Delta x^2)$
- the **TE** must vanish as $\Delta x \rightarrow 0$, when this is the case, the finite difference approximation is said to be consistent.

consistency requirement: $\lim_{\Delta r \to 0} TE = 0$

$$\lim_{\Delta x \to 0} TE = 0$$

3. Generalized formulation(i)

Replace the continuous domain by finite difference grid

$$u(x,y) \rightarrow u(i\Delta x, j\Delta y); 0 \le x \le n\Delta x, 0 \le y \le n\Delta y$$

 Δy let $u_{i,j}$ to represent $u(i\Delta x, j\Delta y)$ or $u(x_0, y_0)$

then
$$u_{i+1,j} = \mathbf{u}(\mathbf{x}_0 + \Delta \mathbf{x}, \mathbf{y}_0)$$

$$u_{i+1, j+1} = u(x_0 + \Delta x, y_0 + \Delta y)$$

for time dependent problems

$$u_{i+1,j+1}^{k+1} = u(x_0 + \Delta x, y_0 + \Delta y, t_0 + \Delta t)$$

• different schemes are possible, best scheme is to optimize for accuracy, economy and programming simplicity.

from Taylor series expansion to get

Forward difference:

$$\frac{\partial u}{\partial x}\Big|_{x_i, y_j} = \frac{u_{i+1, j} - u_{i, j}}{\Delta x} + O(\Delta x)$$

$$\left. \frac{\partial u}{\partial y} \right|_{x_i, y_j} = \frac{u_{i,j+1} - u_{i,j}}{\Delta y} + O(\Delta y)$$

Backward difference:

$$\left. \frac{\partial u}{\partial x} \right|_{x_{i}, y_{i}} = \frac{u_{i, j} - u_{i-1, j}}{\Delta x} + O(\Delta x)$$

$$\left. \frac{\partial u}{\partial y} \right|_{x_{i+1}, y_j} = \frac{u_{i+1, j} - u_{i+1, j-1}}{\Delta y} + O(\Delta y)$$

Central difference:

$$\left. \frac{\partial u}{\partial x} \right|_{x_i, y_i} = \frac{u_{i+1, j} - u_{i-1, j}}{2\Delta x} + O\left(\Delta x^2\right)$$

3. Generalized formulation(ii)

• for
$$d^2u/dx^2$$
 $\frac{\partial^2 u}{\partial x^2} = \frac{u_{i+1,j}}{2}$

• for
$$d^2u/dx^2$$

$$\frac{\partial^2 u}{\partial x^2} = \frac{u_{i+1,j} - 2u_{i,j} + u_{i-1,j}}{\Delta x^2} + O(\Delta x^2)$$

for general one-dimensional grid, dpu/dxp can be obtained from

$$X_1 X_2 X_3 X_4 X_0 X_{n-1} X_n$$

• The procedure provides derivative on an arbitrary

$$\left. \frac{d^{p} u}{dx^{p}} \right|_{x_{i}} = \gamma_{1} u_{1} + \gamma_{2} u_{2} + \gamma_{3} u_{3} + \dots = \sum_{m=1}^{n} \gamma_{m} u_{m}$$

- In general, approximation up to $O(\Delta x_{max})^{n-p}$ can be achieved.
- When n=p+1, the minimum number of points is used, and the resulting approximation will in general be first order, although second-order approximations may be obtained when Δx_1 is constant and p is even.

Example 1: (i)

• Derive a FD approximation to the equation that describes steady state diffusion of a dissolved substance into a quiescent fluid body in which a first-order reaction occurs:

$$D\frac{d^2C}{dx^2} - KC = 0, \quad 0 < x < 1cm$$

$$C: \text{ concentration, } (C_1 = 1 \text{ g/cm}^3)$$

$$D: \text{ diffusion coefficient } (=0.01 \text{ cm}^2/\text{s})$$

$$K: \text{ reaction rate } (=0.1 \text{ l/s})$$

1. derive an approximation for d^2C/dx^2 using x_{i-1} , x_i and x_{i+1}

P=2, n=3
$$\begin{cases} 1 & 1 & 1 \\ -2\Delta x & -\Delta x & 0 \\ 4\Delta x^{2} & \Delta x^{2} & 0 \end{cases} \begin{bmatrix} \gamma_{i-1} \\ \gamma_{i} \\ \gamma_{i+1} \end{bmatrix} = \begin{cases} 0 \\ 0 \\ 2 \end{cases} \Longrightarrow \boxed{\gamma_{i-1} = \frac{1}{\Delta x^{2}}, \quad \gamma_{i} = \frac{-2}{\Delta x^{2}}, \quad \gamma_{i+1} = \frac{1}{\Delta x^{2}}}$$

FD expression:

$$D\frac{C_{i+1} - 2C_i + C_{i-1}}{\Delta x^2} - KC_i = 0$$

$$C_{i+1} + \left(-\frac{K\Delta x^2}{D} - 2\right)C_i + C_{i-1} = 0$$

Example 1: (ii)

$$C_{i+1} + \left(-\frac{K\Delta x^2}{D} - 2\right)C_i + C_{i-1} = 0$$

• The equation is the algebraic equation used to solve for the nodal approximations

at the boundary

$$C_{x=0} = 0 \quad and \quad C_{x=1cm} = 1$$

the equation in matrix form

$$\begin{bmatrix} 1 & & 0 & & 0 & & 0 & \dots & \dots \\ 1 & -\frac{K\Delta x^2}{D} - 2 & & 1 & & 0 & \dots & \dots \\ 0 & & 1 & & -\frac{K\Delta x^2}{D} - 2 & 1 & \dots & \dots \\ \dots & & \dots & & \dots & \dots & \dots \\ 0 & & 0 & & 0 & \dots & 1 \end{bmatrix} \begin{bmatrix} C_1 \\ C_2 \\ C_3 \\ C_4 \\ \vdots \\ C_n \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ \vdots \\ 1 \end{bmatrix}$$

re-write as

$$[M](C) = \{F\}$$

or

$$M_{i,j}C_i = F_i$$

Example 1: (iii)

• Impose 3,5,10 and 20 points discretization

3 POINTS:
$$X_1 = 0$$
 $X_2 = 0.5$ $X_3 = 1$

$$\begin{cases}
1 & 0 & 0 \\ 1 & -\frac{K\Delta x^2}{D} - 2 & 1 \\ 0 & 0 & 1
\end{cases}
\begin{cases}
C_1 \\ C_2 \\ C_3
\end{cases} = \begin{cases}
0 \\ 0 \\ 1
\end{cases}$$

$$C_2 = \frac{D}{K\Delta x^2 + 2D} = \frac{0.01}{0.1*(0.5)^2 + 2*0.01} = 0.222$$

analytical solution

$$C = \frac{1}{e^{\sqrt{K/D}} - e^{-\sqrt{K/D}}} \left(e^{\sqrt{K/D}x} - e^{-\sqrt{K/D}x} \right)$$

Example 2: (i)

Derive a FD approximation for the steady-state reaction-diffusion equation subject to a flux-type boundary condition

$$D \frac{d^2C}{dx^2} - KC = 0, \quad 0 < x < 1cm$$

$$C(0) = 0, \quad D \frac{dC}{dx}\Big|_{x=1} = C_*$$

$$C: \text{ concentration, } (C_*=0.01 \text{ g/cm}^3)$$

$$D: \text{ diffusion coefficient } (=0.01 \text{ cm}^2/\text{s})$$

$$K: \text{ reaction rate } (=0.1 \text{ l/s})$$

Finite diffference approximation for x_{i-1} , x_i and x_{i+1}

$$= \sum_{i+1} \left(-\frac{K\Delta x^2}{D} - 2 \right) C_i + C_{i-1} = 0$$

BC:
$$C_{x=0} = 0$$
 and

$$\begin{cases} D \frac{C_{n+1} - C_{n-1}}{2\Delta x} = C_* & central \ difference; or \\ D \frac{C_{n+1} - C_n}{\Delta x} = C_* & backward \ difference \end{cases}$$

$$\begin{cases} -C_{n-1} + C_{n+1} = \frac{2\Delta x C_*}{D}; or \\ -C_n + C_{n+1} = \frac{\Delta x C_*}{D} \end{cases}$$

combined with general FD eq.

$$C_{n-1} + \left(-\frac{K\Delta x^2}{D} - 2\right)C_n + C_{n+1} = 0 = \sum 2C_{n-1} + \left(-\frac{K\Delta x^2}{D} - 2\right)C_n = -\frac{2\Delta xC_n}{D}$$

$$C_{n+1} = \frac{2\Delta x C_*}{D} + C_{n-1}$$

Example 2: (ii)

analytical solution

$$C = \frac{C_*}{D\sqrt{K/D}\left(e^{\sqrt{K/D}} - e^{-\sqrt{K/D}}\right)} \left(e^{\sqrt{K/D}x} - e^{-\sqrt{K/D}x}\right)$$

Example 3:

• Use a forward difference method to solve the equation

$$\frac{dC}{dt} + C = 0, \quad t > 0 \quad and \quad C(0) = 1$$

Forward difference method for tk

$$\frac{C^{k+1} - C^k}{\Delta t} + C^k = 0 \implies C^{k+1} = (1 - \Delta t)C^k$$

Where C^0 is known from the initial condition C(0)=1,

exact solution: $C = e^{-t}$

t	exact	dt=0.25	dt=0.5
0	1.000	1	1
0.25	0.779	0.75	
0.5	0.607	0. 563	0.5
0.75	0.472	0.422	
1	0.368	0.316	0.25
1.25	0. 287	0.237	
1.5	0. 223	0.178	0. 125
1.75	0.174	0. 133	
2	0.135	0. 1	0.0625
2. 25	0.105	0.075	
2.5	0.082	0.056	0.0313
2.75	0.064	0.042	
3	0.050	0.032	0.0156
3. 25	0.039	0.024	
3. 5	0.030	0.018	0.0078
3. 75	0.024	0.013	
4	0.018	0.01	0.0039
4. 25	0.014	0.008	
4.5	0.011	0.006	0.002

4. Temporal Finite Difference Approximation(i)

To solve initial value problems, finite difference method is always called on to handle the time derivative.

for the initial value problem $\frac{du}{dt} = f(u, t)$ IC: $u(t_0) = u_0$

$$\frac{du}{dt} = f(u, t)$$

$$IC: u(t_0) = u_0$$

result in a system of equations of the for

$$\left\{\frac{du}{dt}\right\} + \left[M\right]\left\{u\right\} = \left\{F\right\}$$

the time derivative is replaced by finite difference approximation

$$\frac{u^{k+1}-u^k}{\Delta t}+\left[M\right]\left\{u\right\}=\left\{F\right\}$$

select different time step for (u)

Explicit method:

$$\left| \frac{\left(u^{-k+1} \right) - \left(u^{-k} \right)}{\Delta t} + \left[M \right] \left\{ u^{-k} \right\} = \left\{ F \right\}$$

one-step, one-stage

implicit method:

$$\frac{\left(u^{k+1}\right) - \left(u^{k}\right)}{\Delta t} + \left[M\right] \left\{u^{k+1}\right\} = \left\{F\right\}$$

weighted method:

$$\frac{\left(u^{k+1}\right)-\left(u^{k}\right)}{\Delta t}+\theta\left[M\right]\left\{u^{k+1}\right\}+\left(1-\theta\right)\left[M\right]\left\{u^{k}\right\}=\left\{F\right\}$$

- 4. Temporal Finite Difference Approximation(ii)
- When θ is selected as 1, the backward method results, while $\theta = 0$ is the forward method.

$$\frac{\left(u^{k+1}\right)-\left(u^{k}\right)}{\Delta t}+\theta\left[M\right]\left\{u^{k+1}\right\}+\left(1-\theta\right)\left[M\right]\left\{u^{k}\right\}=\left\{F\right\}$$

- Crank-Nicolson method: $\theta = 0.5$
- The first order approximation may have stability problems. predictor-corrector method:

two-stage, one-step method:

$$u^* = u^k + \Delta t (\{F\} - [M]\{u\})^k$$

$$u^{k+1} = u^k + \frac{\Delta t}{2} \left(\left(\left\{ F \right\} - \left[M \right] \left\{ u \right\} \right)^k + \left(\left\{ F \right\} - \left[M \right] \left\{ u^* \right\} \right)^{k+1} \right)$$

Example 4: (i)

• Solve the non-linear initial value problem

$$\frac{du}{dt} + u^2 = 0, \quad t > 0 \quad and \quad u(1) = 1$$

exact solution:

$$u = \frac{1}{t}$$

Finite difference approximation

EXPLICIT METHOD:

$$\frac{\left(u^{k+1}\right)-\left(u^{k}\right)}{\Delta t}=-\left(u^{k}\right)^{2} \implies u^{k+1}$$

$$\Longrightarrow u^{k+1} = u^k - \Delta t \left(u^k\right)^2$$

1 0.9 0.8 0.7 0.6 0.5 0.4						
0.3 0.2 0.1 0	2 dt=0. 25	4 dt=	6 t	8 — excat	10	12 dt=1

dt=0.5	u	exact	dt=1	u
1	1	1	1	1
1.5	0.5	0.6667	2	0
2	0.375	0. 5	3	0
2.5	0.305	0.4	4	0
3	0. 258	0. 3333	5	0
3. 5	0. 225	0. 2857	6	0
4	0. 200	0. 25	7	0
4. 5	0. 180	0. 2222	8	0
5	0. 164	0.2	9	0
5. 5	0. 150	0. 1818	10	0
6	0. 139	0. 1667		
6. 5	0. 129	0. 1538		
7	0. 121	0. 1429		
7. 5	0. 114	0. 1333		
8	0. 107	0. 125		
8. 5	0. 101	0.1176		
9	0.096	0.1111		
9. 5	0.092	0. 1053		
10	0. 087	0. 1		

Example 4: (ii)

• IMPLICIT METHOD:

$$\frac{u^{k+1} - u^k}{\Delta t} = -\left(u^{k+1}\right)^2 \implies u^{k+1} = \frac{-1 + \sqrt{1 + 4\Delta t u^k}}{2\Delta t}$$

Example 4: (iii)

• WEIGHTED METHOD:

Finite difference approximation

$$\frac{\left(u^{k+1}\right)-\left(u^{k}\right)}{\Delta t} = -\theta\left(u^{k+1}\right)^{2} - \left(1-\theta\right)\left(u^{k}\right)^{2} = >$$

$$u^{k+1} = \frac{-1 + \sqrt{1 - 4\theta \Delta t \left((1 - \theta) \Delta t \left(u^k \right)^2 - u^k \right)}}{2\theta \Delta t}$$

Example 4: (iv)

Predictor-corrector method

$$u^* = u^k - \Delta t \left(u^k\right)^2$$

$$u^{k+1} = u^k - \frac{\Delta t}{2} \left[\left(u^k\right)^2 + \left(u^*\right)^2 \right]$$

	N	O	P	Q
5	t	u	u*	exact
6	1	1		1
7	1.5	0.6875	0.5	0.6667
8	2	0.5184	0. 4512	0.5
9	2. 5	0. 4144	0.3841	0.4
10	3	0. 3445	0. 3285	0. 3333
11	3. 5	0. 2945	0. 2851	0. 2857
12	4	0. 257	0. 2511	0. 25
13	4. 5	0. 228	0. 224	0. 2222
14	5	0. 2048	0. 202	0. 2
15	5. 5	0. 1858	0. 1838	0. 1818
16	6	0. 1701	0. 1686	0. 1667
17	6. 5	0. 1568	0. 1556	0. 1538
18	7	0. 1454	0. 1445	0. 1429
19	7. 5	0. 1356	0. 1349	0. 1333
20	8	0. 127	0. 1264	0. 1250
21	8. 5	0. 1194	0.119	0.1176
22	9	0. 1127	0. 1123	0. 1111
23	9. 5	0. 1067	0. 1064	0. 1053
24	10	0. 1013	0. 101	0. 1
25	10. 5	0.0964	0.0962	0.0952
26	11	0.092	0.0918	0.0909

Example 4: (v)

- Compare results from 4 different methods ($\Delta t=0.5$)
 - —computational effort
 - —computer storage
 - —accuracy
 - —stability

Example 5: (i)

• Obtain a finite difference solution for the 2D problem.

$$\frac{\partial^2 h}{\partial x^2} + \frac{\partial^2 h}{\partial y^2} = -\pi^2 \sin(\pi x) \sin(\pi y), \text{ for } 0 \le x \le 1; \ 0 \le y \le 1$$
$$h(0, y) = 1, h(1, y) = y \qquad h(x, 0) = 1 - x, h(x, 1) = 1$$

$$\frac{\partial^2 h}{\partial x^2} + \frac{\partial^2 h}{\partial y^2} = -\frac{R(x, y)}{T} \quad \leftarrow \quad \text{GW flow with recharge R}$$

Step 1: select the grid system

let
$$\Delta x = \Delta y = 0.25$$

Step 2: finite difference method

$$\frac{\partial^{2} h}{\partial x^{2}} = \frac{h_{i-1,j} - 2h_{i,j} + h_{i+1,j}}{\Delta x^{2}} + O(\Delta x^{2})$$

$$\frac{\partial^{2} h}{\partial y^{2}} = \frac{h_{i,j-1} - 2h_{i,j} + h_{i,j+1}}{\Delta y^{2}} + O(\Delta y^{2})$$

$$\frac{h_{i-1,j} - 2h_{i,j} + h_{i+1,j}}{\Delta x^2} + \frac{h_{i,j-1} - 2h_{i,j} + h_{i,j+1}}{\Delta y^2} = f(x_i, y_j)$$

$$f(x_i, y_j) = -\pi^2 \sin(\pi x_i) \sin(\pi y_j)$$

Example 5: (ii)

• Application of these equations at each interior node leads to nine independent linear algebraic equation, each of which has the form.

$$h_{i-1,j} + h_{i+1,j} + h_{i,j-1} + h_{i,j+1} - 4h_{i,j} = \Delta x^2 f(x_i, y_j)$$

Step 3: form the matrix for nodes (2,2), (2,3), (2,4), (3,2), (3,3), (3,4), (4,2), (4,3) and (4,4)

$$h_{1,2} + h_{3,2} + h_{2,1} + h_{2,3} - 4h_{2,2} = \Delta x^2 f(x_2, y_2)$$

$$h_{1,3} + h_{3,3} + h_{2,2} + h_{2,4} - 4h_{2,3} = \Delta x^2 f(x_2, y_3)$$

$$h_{1,4} + h_{3,4} + h_{2,3} + h_{2,5} - 4h_{2,4} = \Delta x^2 f(x_2, y_4)$$

$$h_{2,2} + h_{4,2} + h_{3,1} + h_{3,3} - 4h_{3,2} = \Delta x^2 f(x_3, y_2)$$

$$h_{2,3} + h_{4,3} + h_{3,2} + h_{3,4} - 4h_{3,3} = \Delta x^2 f(x_3, y_3)$$

$$h_{2,4} + h_{4,4} + h_{3,3} + h_{3,5} - 4h_{3,4} = \Delta x^2 f(x_3, y_4)$$

$$h_{3,2} + h_{5,2} + h_{4,1} + h_{4,3} - 4h_{4,2} = \Delta x^2 f(x_4, y_2)$$

$$h_{3,3} + h_{5,3} + h_{4,2} + h_{4,4} - 4h_{4,3} = \Delta x^2 f(x_4, y_4)$$

$$h_{3,4} + h_{5,4} + h_{4,3} + h_{4,5} - 4h_{4,4} = \Delta x^2 f(x_4, y_4)$$

$$h_{3,2} + h_{2,3} - 4h_{2,2} = \Delta x^2 f(x_2, y_2) - h_{2,1} - h_{1,2}$$

$$h_{3,3} + h_{2,2} + h_{2,4} - 4h_{2,3} = \Delta x^2 f(x_2, y_3) - h_{1,3}$$

$$h_{3,4} + h_{2,3} - 4h_{2,4} = \Delta x^2 f(x_2, y_4) - h_{1,4} - h_{2,5}$$

$$h_{2,2} + h_{4,2} + h_{3,3} - 4h_{3,2} = \Delta x^2 f(x_3, y_2) - h_{3,1}$$

$$h_{2,4} + h_{4,4} + h_{3,3} - 4h_{3,4} = \Delta x^2 f(x_3, y_4) - h_{3,5}$$

$$h_{3,2} + h_{4,3} - 4h_{4,2} = \Delta x^2 f(x_4, y_2) - h_{5,2} - h_{4,1}$$

$$h_{3,3} + h_{4,2} + h_{4,4} - 4h_{4,3} = \Delta x^2 f(x_4, y_3) - h_{5,3}$$

$$h_{3,4} + h_{4,3} - 4h_{4,4} = \Delta x^2 f(x_4, y_4) - h_{5,4} - h_{4,5}$$

Example 5: (iii)

• The matrix to be solved is

$\lceil -4 \rceil$	1	0	1	0	0	0	0	0	$h_{2,2}$	[-2.058]
1	-4	1	0	1	0	0	0	0	$h_{2,3}$	-1.436
0	1	-4	0	0	1	0	0	0	$h_{2,4}$	-2.308
1	0	0	-4	1	0	1	0	0	$h_{3,2}$	-0.936
0	1	0	1	-4	1	0	1	0	$\left\{h_{3,3}\right\}$	$= \{-0.617\}$
0	0	1	0	1	-4	0	0	1	$h_{3,4}$	-1.436
0	0	0	1	0	0	-4	1	0	$h_{4,2}$	-0.808
0	0	0	0	1	0	1	-4	1	$h_{4,3}$	-0.936
0	0	0	0	0	1	0	1	-4	$\left\lfloor h_{4,4} \right\rfloor$	$\left[-2.058\right]$

result:

$\left[h_{2,2}\right]$	[1.076]
$h_{2,3}$	1.247
$h_{2,4}$	1.201
$h_{3,2}$	0.997
$\left \left\{h_{3,3}\right.\right $	$\cdot = \left\{1.276\right\}$
$h_{3,4}$	1.247
$ h_{4,2} $	0.701
$h_{4,3}$	0.997
$\lfloor h_{4,4} \rfloor$	[1.076]

Example 6: (i)

• Solve
$$\frac{\partial C}{\partial t} = D \frac{\partial^2 C}{\partial x^2}$$

$$C(0,t) = C_0, C(\infty,t) = 0,$$

and $C(x,0) = 0$

 $= D \frac{\partial^2 C}{\partial x^2} \begin{vmatrix} C(0,t) = C_0, C(\infty,t) = 0, \\ and C(x,0) = 0 \end{vmatrix}$ use $C_0 = 1 \text{ mg/m}^3$, $D = 5 \times 10^{-5}$

Fully explicit finite difference approximation is

$$\frac{C_i^{k+1} - C_i^k}{\Delta t} = D \frac{C_{i+1}^k - 2C_i^k + C_{i-1}^k}{\Delta x^2}$$

$$C_i^{k+1} = \frac{D\Delta t}{\Delta x^2} C_{i+1}^k + \left(1 - \frac{2D\Delta t}{\Delta x^2}\right) C_i^k + \frac{D\Delta t}{\Delta x^2} C_{i-1}^k$$

From the condition

$$\gamma = \frac{D \Delta t}{\Delta x^2} \le \frac{1}{2}$$

, select $\Delta x=0.5m$, $\Delta t=5$ min

Example 6: (ii)

• Solve the problem with fully implicit method

$$\frac{C_{i}^{k+1} - C_{i}^{k}}{\Delta t} = D \frac{C_{i+1}^{k+1} - 2C_{i}^{k+1} + C_{i-1}^{k+1}}{\Delta x^{2}} = \sum \frac{D\Delta t}{\Delta x^{2}} C_{i+1}^{k+1} + \left(-1 - \frac{2D\Delta t}{\Delta x^{2}}\right) C_{i}^{k+1} + \frac{D\Delta t}{\Delta x^{2}} C_{i-1}^{k+1} = -C_{i}^{k}$$

select $\Delta x=0.25m$, $\Delta t=10$ min and 100min

Thanks