水库不平衡输沙及淤积形态

引 言

- 水库壅水后挟沙能力锐减。若沉速不变,设边坡系数为5,底宽与原河道水 深之比为100,则当水深加大1倍时,挟沙能力只有原来的1/17.7;当水深加 大2倍时,挟沙能力只有原来的1/98.6。
- 另一方面,相当一类水库,总要排泄一些泥沙,特别在洪峰时,又是为什么?
 淤积分选级配变细。

窝头寺沉沙条渠,
$$\lambda = 0.578$$
, $\frac{\omega}{\omega_0} = \frac{1}{158}$

 不平衡输沙的影响。泥沙沉降需要一定时间,颗粒愈细,下沉愈慢,导致含 沙量总是大于挟沙能力。在下面的图1-1中,淤积过程含沙量就有不少超过挟 沙能力1倍左右。

黄河窝头寺沉沙条渠沿程淤积资料

图 1-1 黄河打渔张窝头寺沉沙条渠含沙量、挟沙能力、 分组含沙量、沉速沿程变化 S常大于S*
粗细泥沙分组含沙量均减少,但快慢不一样。最细一组不变--类似于冲泻质平均沉速由0.00496m/s减小于0.0000314m/s,减少了158倍。这对挟沙能力影响很大。这正是水库难以将泥沙彻底淤完的道理。

般 m = 0.92)

 $S^* = \kappa (\frac{V^3}{gh\omega})^m$

内蒙古三盛公引水枢纽沿程冲刷资料

打漁张资料换算成以淤积百分数表示的关系

三盛公资料换算成以冲刷百分数表示的关系

底层泥沙交换强度简介

我们曾经利用概率论与力学相结合的途径,研究了泥 沙运动的统计理论(随机理论),获得了一系列成果, 并出版了专著《泥沙运动统计理论》(科学出版社, 1984年)。目前它在国内外尚未见到类似成果。水库泥 沙运动理论的基本部分,就基于泥沙运动的统计理论, 特别是床面泥沙交换的理论。下面扼要予以介绍。 ■ 如图1-A, 泥沙运动共有四种状态: 静止(状态1)、滚 动(状态2)、跳跃(状态3)及悬浮(状态4)。其中 静止称为床沙,滚动与跳跃称为推移质、悬浮称为悬移 质。它们运动情况包括单步和交换(状态转移)如图1-

B

各种状态之间的泥沙转移概率如矩阵所示。 各种状态之间的交换强度(转移强度)如下

$$\lambda_{i.j.l} = \begin{cases} \lambda_{1.j.l} = P_{1.j.l} \frac{K_{1.l}}{t_{j.l}} & (i = 1, j \neq 1, l = 1, 2...n) \\ \lambda_{i.j.l} = P_{i.j.l} \overline{K}_{i.l} \mu_{i.l} U_{i.l} & (i = 2, 3, 4, j = 1, 2, 3, 4, j \neq i, l = 1, 2...n) \end{cases}$$
特殊情况,由静转悬的转移强度(单位面积单位时间转移的颗数)

$$\lambda_{1.4.L} = P_{1.4.L} \frac{\overline{K}_{1.l}}{t_{j.0.l}} = \frac{m_0}{\frac{\pi}{4} D_l^2} P_{1.l} R_l \frac{\beta_l}{t_{0.4.l}}$$
$$\lambda_{4.1.l} = P_{1.4.l} - \frac{\overline{K}_{4.l}}{L_{4.l}} U_{4.l} = (1 - \varepsilon_{0.l})(1 - \beta_l) \frac{q P_{4.l} S_l}{\frac{\pi}{6} D_l^3}$$

$$\lambda_{4.1.l} = (1 - \varepsilon_{0.l})(1 - \varepsilon_{4.l}) \frac{1}{L_{4.l}} U_{4.l} K_{4.l} = (1 - \varepsilon_{0.l})(1 - \varepsilon_{4.l}) \frac{q}{L_{4.l}} \frac{P_{4.l}S}{\frac{\pi}{6} D_l^3 \gamma_s}$$
(1-2-1)

$$\lambda_{1.4.l} = \frac{4m_0}{\pi D_l^2} \frac{P_{1.l} \beta_l R_l}{t_{0.4.l}}$$
(1-2-2)

$$1 - \mathcal{E}_{0,l} = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\frac{V_{b,c,0,l} - \overline{V_b}}{\sigma_x}} e^{-\frac{t^2}{2}} dt = 1 - \frac{1}{\sqrt{2\pi}} \int_{\frac{V_{b,c,0,l} - \overline{V_b}}{\sigma_x}}^{\infty} e^{-\frac{t^2}{2}} dt = f_1(\frac{\overline{V_b}}{u_*}, \frac{V_{b,c,0,l}}{u_*}) \qquad (1 - 2 - 3)$$

$$\varepsilon_{4,l} = \frac{1}{\sqrt{2\pi}} \int_{\frac{\omega_l}{\sigma_y}}^{\infty} e^{-\frac{t^2}{2}} dt = f_2\left(\frac{\omega_l}{\sigma_y}\right) = f_2\left(\frac{\omega_l}{u_*}\right) \tag{1-2-4}$$

$$R_{l} = \frac{(1 - \varepsilon_{0,l})(1 - \varepsilon_{4,l})}{1 - (1 - \beta_{l})(1 - \varepsilon_{1,l}) + (1 - \varepsilon_{0,l})(1 - \varepsilon_{4,l})}$$

(1-2-5)

$$\varepsilon_{1.l} = \frac{1}{\sqrt{2\pi}} \int_{\frac{V_{b.c.l} - \overline{V_b}}{\sigma_x}}^{\infty} e^{-\frac{z^2}{2}} dz = f_3(\frac{\overline{V_b}}{u_*}, \frac{V_{b.c.1.l}}{u_*}) \qquad (1 - 2 - 6)$$

$$V_{b.c.l} = \overline{\varphi}(\Delta') \sqrt{53.9D_l} + \frac{3 \times 10^{-7}}{D_l} (1 + 0.85h) \qquad (1 - 2 - 7)$$

$$t_{0.4,l} = \frac{1}{\sqrt{2\pi}\beta_l} \int_{\frac{\omega_l}{\sigma_y}}^{\infty} \tau_{0.4,l}(z, \frac{\omega_l}{\sigma_y}\sigma) e^{-\frac{z^2}{2}} dz \qquad (1-2-8)$$

(1 - 2 - 9)

$$\tau_{0.4,l} = \frac{4}{3C} \frac{\rho_s + \frac{\rho}{2}}{\rho} \frac{D_l}{\omega_l} \left[Arcth \frac{V_{b,y} - u_{4,y,D_l}}{\omega_l} - Arcth \frac{V_{b,y}}{\omega_l} \right]$$

$$=\frac{4}{3C}\frac{\rho_{s}+\frac{\rho}{2}}{\rho}\frac{D_{l}}{\omega_{l}}f_{4}(\frac{V_{b.y}}{\sigma_{y}},\frac{u_{4.y.D_{l}}}{\sigma_{y}},\frac{\omega_{l}}{\sigma_{y}})$$

$$\frac{2}{3C} \frac{\rho_s + \frac{\rho}{2}}{\rho} \left\{ \left[\ln \frac{(V_{b,y} - u_{4,y,D_l})^2 - \omega_l^2}{v_{b,y} - \omega_l^2} \right] + 2 \frac{V_{b,y}}{\omega} \left[\operatorname{Arcth} \frac{V_{b,y} - u_{4,y,D_l}}{\omega_l} - \operatorname{Arcth} \frac{V_{b,y}}{\omega_l} \right] \right\}$$

$$= \frac{2}{3C} \frac{\rho_s + \frac{\rho}{2}}{\rho} f_5 \left(\frac{\sigma_{b,y}}{\sigma_y}, \frac{u_{4,y,D_l}}{\sigma_y}, \frac{\omega_l}{\sigma_y} \right) = 1$$

$$(1 - 2 - 10)$$

$$\frac{dx_{u,l}}{V(y)} = \frac{dy}{\overline{u}_{y,u,l}}$$

$$(1 - 2 - 11)$$

$$x_{u,l} = \frac{1}{\overline{u}_{y,u,l}} \int_0^{h_l} V(y) dy = \frac{q(h_l)}{\overline{u}_{y,u,l}}$$

$$(1 - 2 - 12)$$

$$L_{4,l} = q(h_l) \left[\frac{1}{\overline{u}_{y,u,l}} + \frac{1}{\overline{u}_{y,d,l}} \right]$$

$$(1 - 2 - 13)$$

$$q(h_l) = \int_0^{h_l} V(y) dy$$

$$(1 - 2 - 14)$$

$$L_{4,l} = \frac{q(h_l)}{\omega_l} \left[\left\{ \frac{1}{\sqrt{2\pi}} \frac{u_*}{\omega_l \beta_l} e^{-\frac{1}{2} \left(\frac{\omega_l}{u_*}\right)^2} - 1 \right\}^{-1} + \left\{ \frac{1}{\sqrt{2\pi}} \frac{u_*}{\omega_l \left(1 - \beta_l\right)} e^{-\frac{1}{2} \left(\frac{\omega_l}{u_*}\right)^2} + 1 \right\}^{-1} \right] = q(h_l) f_6(\frac{\omega_l}{u_*})$$

(1-2-18)

$$\frac{S(y)}{S_b} = e^{\frac{-6\omega}{\kappa u_*}(\frac{y}{h})} \qquad (1-2-19)$$

$$\varepsilon_s = \frac{\kappa}{6} u_* h \qquad (1-2-20)$$

$$\frac{dV}{dy} = \frac{\tau_0}{\rho} \frac{1}{\varepsilon_s} (1-\frac{y}{h}) = \frac{u_*^2}{\frac{\kappa}{6} u_* h} (1-\frac{y}{h}) = \frac{6u_*}{\kappa h} (1-\frac{y}{h}) \qquad (1-2-21)$$

$$\tau_0 = \rho u_*^2 \qquad (1-2-22)$$

$$V = V_b + \frac{3u_*}{\kappa} [1-(1-\eta)^2] \qquad (1-2-23)$$

$$\eta = \frac{y}{h} \qquad (1-2-24)$$

$$\overline{V} = \int_0^1 V d\eta = V_b + \frac{2u_*}{\kappa} \qquad (1-2-25)$$

$$V = \overline{V} - \frac{2u_*}{\kappa} + \frac{3u_*}{\kappa} [1 - (1 - \eta)^2] = \overline{V} + \frac{u_*}{\kappa} - \frac{3u_*}{\kappa} (1 - \eta)^2 \qquad (1 - 2 - 26)$$

$$q(h_l) = q_1(\frac{h_l}{h}) = q_1(\eta_l) = \int_0^{h_l} V dy = h \int_0^{\eta_l} V d\eta \qquad (1 - 2 - 27)$$

$$= h \left\{ (\overline{V} + \frac{u_*}{\kappa}) \eta_l + \frac{u_*}{\kappa} [(1 - \eta_l)^3 - 1] \right\}$$

$$q(h_l) = q_1(\frac{h_l}{h}) = q_1(\eta_l) = \int_0^{h_l} V dy = h \int_0^{\eta_l} V d\eta \qquad (1 - 2 - 27)$$

$$q = hV$$

(1-2-28)

(1 - 2 - 31)

(1-2-32)

$$\frac{q(h_l)}{q} = \left\{ (1 + \frac{u_*}{\kappa \overline{V}})\eta_l + \frac{u_*}{\kappa \overline{V}} [(1 - \eta_l)^3 - 1] \right\} = f_7(\eta_l, \frac{\overline{V}}{u_*})$$
(1-2-29)

$$\eta_l = \frac{y}{h_l} \tag{1-2-30}$$

$$V_{M} = \overline{V} + \frac{u_{*}}{\kappa} = \frac{\overline{V}}{0.85}$$

 $\overline{V} = 14.17u_*$

$$\frac{q(h_l)}{q} = \frac{q_1(\eta_l)}{q} = 0.647\eta_l + 0.529\eta_l^2 - 0.176\eta_l^3 = \tilde{f}_7(\eta_l) \qquad (1-2-33)$$

$$h_{l} = \int_{0}^{h} \frac{2y}{h\overline{S}_{l}} S_{l}(y) dy$$

$$h_{l} = \int_{0}^{h} \frac{2yS_{b.l}}{h\overline{S}_{l}} e^{-\frac{6\omega_{l}}{\kappa u_{*}}(\frac{y}{h})} dy = \int_{0}^{1} \frac{2S_{b.l}h}{\overline{S}_{l}} \eta e^{-\frac{6\omega_{l}}{\kappa u_{*}}\eta} d\eta$$

$$= \frac{2S_{b.l}h}{\overline{S}_{l}} \left[\left(\frac{\kappa u_{*}}{6\omega_{l}}\right)^{2} (1 - e^{-\frac{6\omega_{l}}{\kappa u_{*}}}) - \frac{\kappa u_{*}}{6\omega_{l}} e^{-\frac{6\omega_{l}}{\kappa u_{*}}} \right]$$

$$(1 - 2 - 34)$$

$$\overline{S}_{l} = \frac{1}{h} \int_{0}^{h} S_{l}(y) dy = \int_{0}^{1} S_{b,l} e^{-\frac{6\omega_{l}}{\kappa u_{*}}\eta} d\eta = S_{b,l} \frac{\kappa u_{*}}{6\omega_{l}} (1 - e^{-\frac{6\omega_{l}}{\kappa u_{*}}})$$
(1-2-35)

$$\eta_{l} = \frac{h_{l}}{h} = 2 \left[\frac{\kappa u_{*}}{6\omega_{l}} - \frac{e^{-\frac{6\omega_{l}}{\kappa u_{*}}}}{1 - e^{-\frac{6\omega_{l}}{\kappa u_{*}}}} \right] = f_{8}(\frac{\omega_{l}}{u_{*}})$$
(1-2-36)

$$L_{4,l} = \frac{q}{\omega_l} f_6(\frac{\omega_l}{u_*}) f_7(\eta_l, \frac{V}{u_*}) = \frac{q}{\omega_l} F_L(\frac{\omega_l}{u_*}, \frac{V}{u_*})$$

(1 - 2 - 37)

$$(\lambda_{4.1.l} - \lambda_{1.4.l})\frac{\pi}{6}\gamma_s D^3 = \left\{ (1 - \varepsilon_{0.l})(1 - \varepsilon_{4.l})\frac{P_{4.l}qS}{L_{4.l}} - \frac{2}{3}m_0\gamma_s\frac{P_{1.l}D_lR_l}{t_{0.4.l}} \right\} \quad (1 - 2 - 38)$$

$$\varepsilon_{y} \frac{\partial S_{l}}{\partial y}|_{y=0} + \omega_{l} S_{b,l} = (\lambda_{4,1,l} - \lambda_{1,4,l}) \frac{\pi}{6} \gamma_{s} D_{l}^{3} \qquad (1-2-39)$$

$$q\frac{\partial S_l}{\partial x} = \left[\varepsilon_y \frac{\partial S_l}{\partial y}\Big|_{y=0} + \omega_l S_{b,l}\right] = -(\lambda_{4,1,l} - \lambda_{1,4,l})\frac{\pi}{6}\gamma_s D_l^3 \qquad (1-2-40)$$

$$\frac{dS_{l}}{dx} = -\left[(1 - \varepsilon_{0,l})(1 - \varepsilon_{4,l})\frac{P_{4,l}S}{L_{4,l}} - \frac{2}{3}m_{0}\frac{\gamma_{s}}{q}\frac{P_{1,l}\beta_{l}R_{l}D_{l}}{t_{0,4,l}}\right]$$
(1-2-41)
$$\frac{dS}{dx} = -\left[\sum_{l=1}^{n}(1 - \varepsilon_{0,l})(1 - \varepsilon_{4,l})\frac{P_{4,l}S}{L_{4,l}} - \frac{2}{3}m_{0}\gamma_{s}\frac{1}{q}\sum_{l=1}^{n}\frac{P_{1,l}\beta_{l}R_{l}D_{l}}{t_{0,4,l}}\right]$$
(1-2-42)

1-3 非均匀沙平衡输沙的条件及挟沙能力

强平衡
$$\frac{dS_{l}}{dx}$$
 =0, 则由 (1-2-41) 逐有
 $\frac{2}{3}m_{0}\frac{\gamma_{s}}{q}\frac{P_{1,l}D_{l}\beta_{l}R_{l}}{t_{0.4,l}} = \frac{(1-\varepsilon_{0,l})(1-\varepsilon_{4,l})}{L_{4,l}}P_{4,l}^{*}S^{*}$ (1-3-1)
将式 (1-3-1) 代入式 (1-2-41) 逐有
 $\frac{dS_{l}}{dx} = -\frac{(1-\varepsilon_{0,l})(1-\varepsilon_{4,l})}{L_{4,l}}[P_{4,l}S-P_{4,l}^{*}S^{*}]$ (1-3-2)

上式为非均匀沙一维不平衡输沙的实用方程。据此 $\frac{dS_l}{dx} = 0$ 等价于

$$\begin{array}{c}
P_{4,l} = P_{4,l}^* \\
S = S^*
\end{array}$$
(1-3-3)

而按弱平衡 $\frac{dS_{l}}{dx}$ =0,即含沙量沿程不变,从泥沙数量看,泥沙不冲淤。 但是由于仅 $\frac{dS}{dx}$ =- $\Sigma \frac{(1-\varepsilon_{0,l})(1-\varepsilon_{4,l})}{L_{4,l}}$ [$P_{4,l}S-P_{4,l}^{*}S^{*}$]=0 则各组泥沙仍然发生交换,床沙组成会发生变化。交换的形式一般粗 淤细冲。

1-4 非均匀沙挟沙能力与均匀沙的关系

由式 (1-3-1) 得

$$S_{l}^{*} = P_{4,l}^{*}S^{*} = \frac{2}{3}m_{0}\frac{\gamma_{s}}{q}\frac{P_{1,l}\beta_{l}R_{l}D_{l}}{t_{0,4,l}}\frac{L_{4,l}}{(1-\varepsilon_{0,l})(1-\varepsilon_{4,l})} = S^{*}(l)P_{1,l} \qquad (1-3-6)$$

这里 S_l^* 表示混合沙中第l组粒径的分组挟沙能力,

$$S^{*}(l) = \frac{2}{3}m_{0}\frac{\gamma_{s}}{q}\frac{\beta_{l}D_{l}}{t_{0.4,l}}\frac{R_{l}L_{4,l}}{(1-\varepsilon_{0,l})(1-\varepsilon_{4,l})}$$
(1-3-7)

则表示泥沙全部为l组时的挟沙能力,即粒径为 D_l 时均匀的挟沙能力, $S_l^* = S^*(l)$ 彼此是不一样的。式 (1-3-6)可改写成

$$P_{1,l} = \frac{S_l^*}{S^*(l)} = \frac{P_{4,l}^* S^*}{S^*(l)}$$
(1-3-8)

再对1求和,有

$$S^* = \sum_{l=1}^n S^*(l) P_{1.}$$

(1 - 3 - 9)

或

$$S^* = \frac{1}{\sum_{l=1}^{n} \frac{P_{4,l}}{S^*(l)}}$$

(1 - 3 - 10)

这就给出了如何由均匀沙挟沙能力S*(l)推求非均匀沙挟沙能力的方法。

床沙级配与挟沙能力级配也即悬沙级配,在理论上还存在关系

$$P_{4,l}^{*} = \frac{\frac{P_{1,l}\beta_{l}R_{l}D_{l}L_{4,l}}{(1 - \varepsilon_{0,l})(1 - \varepsilon_{4,l})t_{0,4,l}}}{\sum_{l=1}^{n} \frac{P_{1,l}\beta_{l}R_{l}D_{l}L_{4,l}}{(1 - \varepsilon_{0,l})(1 - \varepsilon_{4,l})t_{0,4,l}}} = \frac{P_{1,l}S^{*}(l)}{\sum_{l=1}^{n}P_{1,l}S^{*}(l)} \quad (1 - 3 - 11)$$

式(1-3-9)~(1-3-11)给出了非均匀挟沙能力的一个重要概念,当输沙处于强平衡时,总挟沙能力既可由床沙级配迭加,也可由悬移质级配迭加,并且此时床沙级配与悬沙级配是一一对应的。 但是当输沙不是强平衡时,则确定挟沙能力及其级配的不是悬移质级配而是床沙级配,并且其公式是式(1-3-8)或(1-3-9), 而不是其它的考虑。 需要强调指出的有两点:

第一,这里所谓床沙级配,是指当时的瞬时值,并不是 不变的。例如,挟带悬移质泥沙的水流经过卵石河床,如 按床沙级配(卵石级配)计算挟沙能力则为零。但细沙仍可能 不淤。

第二,前面讨论的是强平衡的情况,实际上可能有弱平衡,甚至不平衡的情况,此时挟沙能力级配不同于悬移质级配,它既与悬移质级配有关又与床沙级配有关。我们曾做了较深入的研究,给出了一般条件下挟沙能力级配和有效床沙级配表达式^[8,9]。

现在回到挟沙能力公式的讨论。将式(1-2-5)代入式(1-3-7)得 $S^*(l) = S_b^*(l) = \mu_l S_1^*(l)$ (1-3-12)

其中

$$\mu_{l} = \frac{\beta_{l}}{1 - (1 - \varepsilon_{1,l})(1 - \beta_{l}) + (1 - \varepsilon_{0,l})(1 - \varepsilon_{4,l})}$$
(1-3-13)

当悬浮颗粒较粗,不存在粘着力和薄膜水附加下压力时,或者已经松动的泥沙(包括悬浮、跳跃、滚动的泥沙刚下落至床面,彼此薄膜水未发生接触的颗粒),则 $\beta_l = \varepsilon_{4,l}$,与此同时, $\varepsilon_{0,l} = \varepsilon_{1,l}$,此时式 (1-3-12)为

$$S^{*}(l) = \frac{2}{3}m_{0}\gamma_{s}\varepsilon_{4,l}\frac{D_{l}}{\omega_{l}t_{0,4,l}}\frac{L_{4,l}\omega_{l}}{q}$$
$$= \frac{2}{3}m_{0}\gamma_{s}\mu_{0,l}\frac{D_{l}}{\omega_{l}t_{0,4,l}}\frac{L_{4,l}\omega_{l}}{q} = \varepsilon_{4,l}S_{1}^{*}(l) = S_{u}^{*}(l) \qquad (1-3-16)$$

其中

$$\mu_{0,l} = \varepsilon_{4,l} \tag{1-3-}$$

挟沙能力的多值性

上述两种挟沙能力的比值为

$$\kappa_{1} = \frac{S_{b}^{*}(l)}{S_{u}^{*}(l)} = \frac{\mu_{l}}{\mu_{0,l}} = \frac{\mu_{l}}{\varepsilon_{4,l}} \qquad (1-3-18)$$

显然它总是小于1的。 μ_l 、 $\mu_{0,l}$ 反映了泥沙颗粒在床面起悬是否需要松动,它们 全部取决于泥沙颗粒的密实情况,即床沙干容重。其它影响因素,如粒径等则通 过干容重起作用。实际上粘着力、薄膜水附加下压力取决于粒径及颗粒间的间距 $t^{[10]}$,而它们又与干容重密切联系。事实上, μ_l 相应于一般河道水下泥沙干容重,

而 μ₀₁ 相应于初期干容重的值。

实际挟沙能力应由上述两种挟沙能力按一定比例加权,即

 $S^{*}(l) = \alpha S_{b}^{*}(l) + (1 - \alpha) S_{u}^{*}(l) \qquad (1 - 3 - 19)$

其中 $\alpha \le 1$ 。由于 α 变化频繁,作为未知系数确定起来颇为麻烦,我们可适当简化。假定在一般条件下,挟沙能力为 $S^*(l) = \frac{1}{6} [NS_u^*(l) + (6 - N)S_b^*(l)] = \frac{1}{6} [N + (6 - N)]S_u^*(l) = \kappa_N S_u^*(l)$ (1−3−20) 其中明显淤积 N=6,一般淤积 N=4,平衡 N=3,一般冲刷 N=2。

挟沙能力系数变化估计理论值

表 1-1 中给出了类似于黄河的条件下($h=2m,u_*=0.05m/s$)和长江的条件下($h=10m,u_*=0.05m/s$)的两组 $\kappa_6 = \varepsilon_{4,2}$ 、 κ_4 、 κ_3 、 κ_2 的数值。它们大部分随粒径变化不是很强烈,在表中还给出了其算术平均值。可见,不同输沙状态(冲、淤、平衡),系数 $\kappa_{N,l}$ 均有相当变化。关于这些系数变化情况,下面还要进一步分析。

粒 径	$h = 2m, \ u_* = 0.05m/s$					$h = 10m, u_* = 0.05m/s$				
(mm)	${\cal E}_{4.l}$	μ_l	$\kappa_{4.l}$	K _{3.l}	$\kappa_{2.l}$	${\cal E}_{4.l}$	μ_l	$\kappa_{4.l}$	<i>K</i> _{3.<i>l</i>}	<i>K</i> _{2.<i>l</i>}
	$= \kappa_{6.l}$					$= \kappa_{6.l}$				
							300	and a state		S. A
0.01	0.500	0.00242	0.668	0.502	0.336	0.500	0.000577	0.667	0.501	0.334
0.025	0.497	0.0349	0.690	0.531	0.380	0.497	0.000573	0.667	0.501	0.334
0.05	0.488	0.208	0.809	0.631	0.617	0.488	0.00717	0.672	0.507	0.343
0.10	0.451	0.458	1.00	1.00	1.00	0.451	0.0342	0.692	0.537	0.383
0.25	0.272	0.197	0.908	0.862	0.816	0.272	0.0681	0.750	0.625	0.500
0.50	0.0811	0.0462	0.857	0.763	0.713	0.0811	0.0338	0.806	0.708	0.611
1.00						0.00870	0.00602	0.904	0.846	0.794
平均	0.382		0.822	0.715	0.644	0.328		0.737	0.603	0.471
或						11/100			14. 20	
κ_N									AND	

表 1-1 不同输沙状态的系数 κ_{21} 、 κ_{31} 、 κ_{41}

实用的挟沙能力公式

将式 (1-3-26) 与式 (1-3-16) 及式 (1-3-20) ~ (1-3-24) 等比 较后有

 $S^{*}(l) = \kappa_{Nl} S^{*}_{u}(l) \approx \kappa_{N} S^{*}_{u}(l) = \kappa_{N} K'_{0}(\frac{V^{3}}{gh\omega_{l}})^{m} = \kappa_{N} \frac{K'_{0}}{g^{m}} (\frac{V^{3}}{h\omega_{l}})^{m} = \kappa_{N} K_{0} (\frac{V^{3}}{h\omega_{l}})^{m} = K_{N} (\frac{V^{3}}{h\omega_{l}})^{m} \qquad (1 - 3 - 27)$

这样, 挟沙能力系数

 $K_N = \kappa_N K_0$ ($\gamma = 1,2,3,4$) (1-3-28) 其中 K_0 为明显淤积(绝对淤积)状态下挟沙能力系数,是颇为稳定的常数。而 K为一般条件下挟沙能力系数,即包括淤积、冲刷及平衡条件下挟沙能力系数。 (1-3-27)是粒径为 D_i 的均匀沙的挟沙能力公式,为求得混合沙(总)挟沙 能力公式可将式(1-3-27)代入式(1-3-10),并对I求和,遂有

$$S^{*} = \frac{1}{\sum_{l=1}^{m} \frac{(gh\omega_{l})^{m} P_{4,l}^{*}}{KV^{3m}}} = K(\frac{V^{3}}{gh\omega})^{m} \qquad (1-3-29)$$
$$\omega = \left[\sum_{l=1}^{m} P_{4,l}^{*} \omega_{l}^{m}\right]^{\frac{1}{m}} \approx \left[\sum_{l=1}^{m} P_{4,l} \omega_{l}^{m}\right]^{\frac{1}{m}} \qquad (1-3-30)$$

其中

称为挟沙能力的平均沉速。其中近似式表示不是强平衡,而为弱平衡的情况。 若为强平衡, *o**=*o*。

挟沙能力系数

以前我们曾经利用较多的资料,率定式(1-3-27)中的m=0.92,对于长江 $K'_0 = 0.245, \frac{K'_0}{g^{0.92}} = K_0 = 0.03;$ 对于黄河 $K'_0 = 0.327, \frac{K'_0}{g^{0.92}} = K_0 = 0.04$ 。 验证 K_0 的结果见图5A一至图5D。图5-A为黄河三门峡水库资料 $\kappa_0 = 0.04$, 图6为黄河下游河道资料,输沙接近平衡时 $K_0 = 0.030$ 。图5-C为长江新厂资料 $K_3 = 0.017$,图5-D为汉江丹江口资料, $K_0 = 0.030$ 。

挟沙能力系数理论估计值与经验值十分接近,由表 5-A 及式 (1-3-28)及长江黄河 *K*₀ = 0.03 和 0.02 可分别得它们的理论估计值,将其与表 1-2 实际资料率定的 经验值对比后知彼此十分吻和。

河	系数 K	C 值							
名		绝对淤积 K ₀ (C=1)	一般淤积	平衡	一般冲刷				
长江	理论概括	0.028	0.0206	0.0168	0.0132				
(汉江)	过去采用	0.030	0.0200	0.017	0.0140				
黄河	理论概括	0.040	0.0329	0.0286	0.0258				
	过去采用	0.040	0.030	0.025-0.03	0.025				

表 5 挟沙能力系数的变化

1-4-2 恢复饱和系数

恢复饱和系数是反映悬移质不平衡输沙时,含沙量向饱和含沙量即挟沙能力 靠近的恢复速度的重要参数,一般是指方程式(1-4-1)中的*α_l*(或者均匀沙 方程即去掉下标"*l*"的该式)

$$\frac{dS_{l}}{dx} = \frac{d(P_{4,l}S)}{dx} = -\frac{\alpha_{l}\omega_{l}}{q}(P_{4,l}S - P_{4,l}^{*}S^{*})$$

(1 - 4 - 5)

• 一维方程有 α_l <1,大于1。

- $\alpha_1 > 1$, 立面二维扩散方程; 也有 α_1 小于1。
- 实际资料率定大都小于1,黄河下游有取0.01的
恢复饱和系数的定义

$$-. 在强平衡条件下, 应有
$$\frac{(1-\varepsilon_{0,l})(1-\varepsilon_{4,l})}{L_{4,l}^*}P_{4,l}^*S^* = \frac{2}{3}\frac{m_0\gamma_s}{q}\frac{(1-\varepsilon_{0,l})(1-\varepsilon_{4,l})\beta_l}{1-(1-\beta_l)(1-\varepsilon_{0,l})+(1-\varepsilon_{4,l})(1-\varepsilon_{0,l})}\frac{P_{1,l}D_l}{t_{4,0,l}}$$
(1-4-7)$$

冲淤强平衡时恢复饱和系数可定义为

$$\alpha_l^* = \frac{(1 - \varepsilon_{0,l})(1 - \varepsilon_{4,l})}{L_{4,l}^*} \frac{q}{\omega_l} \qquad (1 - 4 - 8)$$

它与冲淤不平衡条件下恢复饱和系数(1-4-2)的

$$\alpha_{l} = \frac{(1 - \varepsilon_{0,l})(1 - \varepsilon_{4,l})}{L_{4,l}} \frac{q}{\omega_{l}}$$

是有差别的。

正如上面已指出的 $L_{4,l}$ 与含沙量沿垂线分布有关,故一般条件下 $L_{4,l} \neq L_{4,l}^*$,相应的 $\alpha_l \neq \alpha_l^*$ 。只是在忽略含沙量分布对单步悬浮距离影响时,才有

$$\alpha_l = \alpha_l^*$$

得到在一般条件下

此时由式(1-4-1)得到在一般条件下

$$\frac{dS_l}{dx} = -\frac{\omega_l}{q} (\alpha_l P_{4,l} S - \alpha_l^* P_{4,l}^* S^*)$$

(1 - 4 - 10)

(1 - 4 - 11)

强平衡条件下恢复饱和系数的公式及数字结果

将式 (1-2-33) 代入式 (1-2-18), 再将其代入式 (1		表 1-2 衍	江速及止动流速	
-4-8) 遂有	D_l	ω_l	$V_{b.c.0.l}$	$V_{b.c.0.l}$
$\alpha_l^* = \frac{(1 - \varepsilon_{0,l})(1 - \varepsilon_{4,l})}{L^*} \frac{q}{\omega_l} = \frac{(1 - \varepsilon_{0,l})(1 - \varepsilon_{4,l})}{0.647n + 0.529n^2 - 0.176n^3}$	(mm)	(<i>cm</i> / <i>s</i>)	(<i>cm</i> / <i>s</i>)	ω_l
$\frac{1}{1} = \frac{1}{1} = \frac{1}{1} = \frac{1}{1}$	0.005	0.00230	1.50	652
$\begin{bmatrix} -\frac{1}{2} & \frac{u_{k}}{u_{k}} & -\frac{1}{2} & \frac{u_{l}}{u_{k}} \end{bmatrix}^{-1} = \begin{bmatrix} 1 & u_{k} & -\frac{1}{2} & \frac{u_{l}}{u_{k}} \end{bmatrix}^{-1}$	0.01	0.00919	2.13	232
$\frac{1}{\sqrt{2\pi}\varepsilon_{4,l}} \stackrel{*}{\underbrace{\omega_l}} e^{-2\pi i_*} - 1 \qquad \frac{1}{\sqrt{2\pi}(1-\varepsilon_{4,l})} \stackrel{*}{\underbrace{\omega_l}} e^{-2\pi i_*} + 1$	0.025	0.0574	3.36	58.5
$= (1 - \varepsilon_{0l})(1 - \varepsilon_{4l})\left[\frac{\omega_l}{m} + \frac{\omega_l}{m}\right]^{-1} - \frac{q}{m}$	0.05	0.230	4.75	20.7
$= (1 - c_{-})f \qquad (1 - 4 - q_{1}(\eta_{l})) \qquad (1 - 4 - q_{1}(\eta_{l}))$	0.10	0.919	6.73	7.32
$=(1-\varepsilon_{0,l})J_l$ (12)	0.25	2.68	10.6	3.96
其中 $\varepsilon_{0,l}$ 、 $\varepsilon_{4,l}$ 、 η_l 由式 (1-2-3)、 (1-2-4) 及 (1-2-36)	0.50	5.57	15.0	2.69
给出。	U.S. C.S.	5	2.7	D I

表 1-3 列出了悬浮概率 $\varepsilon_{4,l}$ 及颗粒上浮与下沉平均速度 $\overline{u}_{y,u,l}$ 、 $\overline{u}_{y,d,l}$ 以及相对悬 浮高度 η_l 和河底至悬浮高度内的相对流量 $q_1(\eta_l)/q$ 。此外在表 1-3 中还给出了

$$f_{l} = (1 - \varepsilon_{4,l}) \left[\frac{\omega_{l}}{\overline{u}_{y,u,l}} + \frac{\omega_{l}}{\overline{u}_{y,d,l}} \right]^{-1} \frac{q}{q_{1}(\eta_{l})} \qquad (1 - 4 - 13)$$

等单步距离有关参数的计算值。

$\underline{\omega_l}$	η_l	$\overline{q_1(\eta_l)}$	${\cal E}_{4.l}$	1- <i>E</i> _{4.1}	$_\omega_l$	$_\omega_l$	$\left[\underbrace{\omega_l}_{+} \underbrace{\omega_l}_{-} \right]^{-1}$	f_l
${\cal U}_{*}$		q			$\overline{u}_{y.u.l}$	$\overline{u}_{y.d.l}$	$\begin{bmatrix} \overline{u}_{y.u.l} & \overline{u}_{y.d.l} \end{bmatrix}$	
0.001	1.000	1.000	0.4996	0.5004	0.00125	0.00125	400	200
0.01	0.976	0.972	0.496	0.504	0.0126	0.0125	39.8	20.6
0.1	0.574	0.514	0.460	0.540	0.131	0.120	3.99	4.19
0.5	0.265	0.206	0.308	0.692	0.778	0.495	0.785	2.64
1	0.133	0.0911	0.159	0.841	1.92	0.777	0.371	3.42
2	0.0666	0.0443	0.0228	0.977	5.48	0.973	0.155	3.42

表 1-3 单步距离等参数计算

D_l	-	$\frac{\omega_l}{\mu} = 0.00$	1		$\frac{\omega_l}{\mu} = 0.01$		$\frac{\omega_l}{\mu} = 0.1$				
()		··· *					······································				
(<i>mm</i>)	$u_* 1 - \varepsilon_{0l} \alpha_l^* $		\mathcal{U}_{*}	$1 - \varepsilon_{0,l}$	$lpha_l^*$	\mathcal{U}_{*}	$1 - \varepsilon_{0,l}$	$lpha_l^*$			
	(cm/s)			(cm/s)			(cm/s)				
0.005	2.30	0.0089	1.78^{*}	0.23	0.287	5.88	0.023	1	4.19		
0.01	9.19	0.0049	0.980^{*}	0.919	0.0618	1.27	0.0919	1	4.19		
0.025	57.4	0.0038	0.760^{*}	5.74	0.0080	0.164*	0.574	0.524	2.20		
0.05	230	0.0036	0.720	23.0	0.0047	0.0964*	2.30	0.0475	0.199*		
0.1	919	0.0035	0.700	91.9	0.0043	0.0882	9.19	0.0099	0.0415*		
0.25	2680	0.0035	0.700	268	0.0037	0.0759	26.8	0.0062	0.0260 [*]		
0.50	5570	0.0035	0.700	557	0.0036	0.0738	55.7	0.0051	0.0214*		
		ω_{l}			ω_{l}		ω_l				
		= 0.5			==1.0		$\frac{1}{u_*}=2.0$				
D_l		${\cal U}_{*}$			\mathcal{U}_{*}		6100	\mathcal{U}_{*}			
(mm)	<i>u</i>	<i>U</i> _*	~**	U _*	<i>U</i> _*	~**	<i>U</i> _*	<i>U</i> _*	~*		
<i>D</i> _l (<i>mm</i>)	<i>u</i> _*	u_* 1- $\varepsilon_{0,l}$	α_l^*	<i>u</i> _*	u_* 1- $\varepsilon_{0,l}$	α_l^*	<i>U</i> _*	u_*	α_l^*		
<i>D</i> _l (<i>mm</i>)	<i>u</i> _* (<i>cm/s</i>)	u_* $1 - \varepsilon_{0,l}$	α_l^*	<i>u</i> _* (<i>cm/s</i>)	u_* $1 - \varepsilon_{0.l}$	α_l^*	<i>u</i> _* (<i>cm/s</i>)	u_* $1 - \varepsilon_{0,l}$	α_l^*		
$\begin{array}{c} D_l \\ (mm) \\ \hline 0.005 \\ 0.01 \end{array}$	<i>u</i> _* (<i>cm/s</i>) 0.0046	u_* $1 - \varepsilon_{0,l}$ 1	α_l^* 2.64	<i>u</i> _* (<i>cm/s</i>) 0.0023	u_* $1 - \varepsilon_{0,l}$ 1	α_{l}^{*} 3.42	<i>u</i> _* (<i>cm/s</i>) 0.00115	u_* $1 - \varepsilon_{0,l}$ 1	α_l^* 3.42		
D_l (mm) 0.005 0.01	<i>u</i> _* (<i>cm/s</i>) 0.0046 0.0184	u_* $1 - \varepsilon_{0,l}$ 1 1	α_{l}^{*} 2.64 2.64	<i>u</i> _* (<i>cm/s</i>) 0.0023 0.00919	u_* $1 - \varepsilon_{0,l}$ 1 1	α_{l}^{*} 3.42 3.42 2.42	<i>u</i> _* (<i>cm/s</i>) 0.00115 0.0046	u_* $1 - \varepsilon_{0,l}$ 1 1	α_{l}^{*} 3.42 3.42 2.42		
$ \begin{array}{c} D_l \\ (mm) \\ \hline 0.005 \\ 0.01 \\ 0.025 \\ 0.05 \\ \hline 0.05 \\ 0.05 \\ \hline 0.00$	<i>u</i> _* (<i>cm/s</i>) 0.0046 0.0184 0.115	u_* $1 - \varepsilon_{0,l}$ 1 1 1 1 0.002	α_l^* 2.64 2.64 2.64 2.64	<i>u</i> _* (<i>cm/s</i>) 0.0023 0.00919 0.0574	u_* $1 - \varepsilon_{0,l}$ 1 1 1	α_l^* 3.42 3.42 3.42 3.42	<i>u</i> _* (<i>cm/s</i>) 0.00115 0.0046 0.0287	u_* $1 - \varepsilon_{0,l}$ 1 1 1 1	α_{l}^{*} 3.42 3		
$ \begin{array}{c} D_l \\ (mm) \\ \hline 0.005 \\ 0.01 \\ 0.025 \\ 0.05 \\ 0.1 \end{array} $	<i>u</i> _* (<i>cm/s</i>) 0.0046 0.0184 0.115 0.46	u_* $1 - \varepsilon_{0,l}$ 1 1 1 0.993 0.105	α_{l}^{*} 2.64 2.64 2.64 2.62 0.51 t*	<i>u</i> _* (<i>cm/s</i>) 0.0023 0.00919 0.0574 0.23	u_* $1 - \varepsilon_{0,l}$ 1 1 1 1 1 1 0.022	α_l^* 3.42 3.42 3.42 3.42 3.42 3.42	<i>u</i> _* (<i>cm/s</i>) 0.00115 0.0046 0.0287 0.115	u_* $1 - \varepsilon_{0,l}$ 1 1 1 1 1	α_{l}^{*} 3.42 3		
$ \begin{array}{c} D_l \\ (mm) \\ \hline 0.005 \\ 0.01 \\ 0.025 \\ 0.05 \\ 0.1 \\ 0.25 \\ \end{array} $	<i>u</i> _* (<i>cm/s</i>) 0.0046 0.0184 0.115 0.46 1.83	$ \begin{array}{c} u_{*} \\ 1 - \varepsilon_{0,l} \\ 1 \\ 1 \\ 0.993 \\ 0.195 \\ 0.0125 \end{array} $	α_{l}^{*} 2.64 2.64 2.64 2.62 0.514 [*] 0.115 [*]	<i>u</i> _* (<i>cm/s</i>) 0.0023 0.00919 0.0574 0.23 0.919	u_* $1 - \varepsilon_{0,l}$ 1 1 1 1 0.832 0.225	α_l^* 3.42 3.42 3.42 3.42 3.42 2.85 0.021*	<i>u</i> _* (<i>cm/s</i>) 0.00115 0.0046 0.0287 0.115 0.456	$ \begin{array}{c} u_* \\ 1 - \varepsilon_{0,l} \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 0 \\ \end{array} $	α_{l}^{*} 3.42 3		
D_{l} (mm) 0.005 0.01 0.025 0.05 0.1 0.25	<i>u</i> _* (<i>cm/s</i>) 0.0046 0.0184 0.115 0.46 1.83 5.36	$ \begin{array}{c} u_{*} \\ 1 - \varepsilon_{0,l} \\ 1 \\ 1 \\ 0.993 \\ 0.195 \\ 0.0436 \\ \end{array} $	α_l^* 2.64 2.64 2.64 2.62 0.514* 0.115*	<i>u</i> _* (<i>cm/s</i>) 0.0023 0.00919 0.0574 0.23 0.919 2.68	$ \begin{array}{c} u_{*} \\ \hline 1 - \varepsilon_{0,l} \\ 1 \\ 1 \\ 1 \\ 0.832 \\ 0.235 \\ \end{array} $	$lpha_{l}^{*}$ 3.42 3.42 3.42 3.42 2.85 0.804 [*]	<i>u</i> _* (<i>cm/s</i>) 0.00115 0.0046 0.0287 0.115 0.456 1.34	u_* $1 - \varepsilon_{0,l}$ 1 1 1 1 1 1 1 0.896	α_{l}^{*} 3.42 3		

表 1-4 止动概率及恢复饱和系数

表 1-4 给出了不同粒径,不同 $\frac{\omega_l}{u_*}$ 时的止动概率 1- $\varepsilon_{0,l}$ 和恢复饱和系数 α_l^* 。

其中止动概率根据式(1-2-3)计算,并取 $\sigma_x = 0.37\overline{V_b} = 2u_*$ 。至于表 1-4 的恢 复饱和系数 α_l^* 按照式(1-4-12),可由表 1-3 的 f_l 及表 1-4 的1- ε_{0l} 相乘得出。 如果舍去不常见的 $u_* < 1 cm/s$ 和 $u_* > 60 cm/s$ 的数据,剩下的 α_l^* 如表 1-4 中带*号 的数值共有 16 个,它们的平均值为 0.68。但是其中有一个端点值较大,它出现 在 $\frac{\omega_l}{u_*} = 2$ 和 $D_l = 0.25 mm$ 时,考虑此时刚开始悬浮,代表性较差,如将其舍去,则 其余 15 点平均值为

$$\alpha_l^*=0.5$$

关于不平衡条件下恢复饱和系数的建议

考虑冲刷时较之平衡时其含沙量沿垂线分布靠近底层,故 $\frac{q_1(\eta_l)}{q}$ 较平衡时要小,因此 α_l 较之 α_l^* 要大;反之,对于淤积则相反,即 α_l 较之 α_l^* 要小。结合到一些实际资料,则冲刷时可取 $\alpha_l=2\alpha_l^*\approx 1.0$,淤积时 $\alpha_l=0.5\alpha_l^*\approx 0.25$ 。这正是以前我们建议的经验数据^[1, 2]。由此冲刷时式(1-4-11)为

$$\frac{dS_{l}}{dx} = -\frac{\alpha_{l}^{*}\omega_{l}}{q}(2P_{4,l}S - P_{4,l}^{*}S^{*}) = -\frac{\omega_{l}}{q}(\alpha_{l}P_{4,l}S - \alpha_{l}^{*}P_{4,l}^{*}S^{*})$$
(1-4-15)

淤积时为

$$\frac{dS_{l}}{dx} = -\frac{\alpha_{l}^{*}\omega_{l}}{q}(0.5P_{4,l}S - P_{4,l}^{*}S^{*}) = -\frac{\omega_{l}}{q}(\alpha_{l}P_{4,l}S - \alpha_{l}^{*}P_{4,l}^{*}S^{*})$$

(1 - 4 - 16)

但是,这两个公式均不能推广到平衡,因为系数不连续。正如前面得到的,到 平衡应有 $\alpha_1 = \alpha_1^*$,考虑到这种情况我们近似的取

$$\alpha_{l} = \begin{cases} 0.5\alpha_{l}^{*} & (SP_{4,l} \ge 1.5S^{*}P_{4,l}^{*}) \\ \left[1 - \frac{SP_{4,l} - S^{*}P_{4,l}^{*}}{S^{*}P_{4,l}^{*}}\right] \alpha_{l}^{*} & (S^{*}P_{4,l}^{*} \le SP_{4,l} \le 1.5S^{*}P_{4,l}^{*}) \\ \left[1 - 2\frac{SP_{4,l} - S^{*}P_{4,l}^{*}}{S^{*}P_{4,l}^{*}}\right] \alpha_{l}^{*} & (0.5S^{*}P_{4,l}^{*} \le SP_{4,l} \le S^{*}P_{4,l}^{*}) \\ 2\alpha_{l}^{*} & (SP_{4,l} \le 0.5S^{*}P_{4,l}^{*}) \end{cases} \end{cases}$$
(1-4-17)

1-4-3 均匀沙平均含沙量沿程变化规律

下面来积分不平衡输沙的基本方程。首先考虑均匀沙的情况。此时由式(1-4-4)直接得

$$\frac{dS}{dx} = -\alpha \frac{\omega}{q} (S - S^*) \qquad (1 - 4 - 18)$$

这是一阶线性方程, 它可以改写成

$$\frac{d(S-S^*)}{dx} + \frac{\alpha\omega}{q}(S-S^*) = -\frac{dS^*}{dx}$$

积分此一阶线性微分方程后得到

$$S_{L} - S_{0}^{*} = (S_{0} - S_{0}^{*})e^{-\frac{\alpha\omega L}{q}} - e^{-\frac{\alpha\omega L}{q}} \int_{0}^{L} e^{\frac{\alpha\omega L}{q}} \frac{dS^{*}}{dx} dx$$

(1 - 4 - 19)

也即

$$\frac{dS^{*}}{dx} = -\frac{S_{0}^{*} - S_{L}^{*}}{L}$$

(1 - 4 - 20)

将其代入式 (1-4-19), 积分后并去掉脚标L得

当L不是很大时,有 $S^* = S_0^* + \frac{S_L^* - S_0^*}{L} x$

$$S = S^* + (S_0 - S_0^*)e^{-\frac{\alpha\omega L}{q}} + (S_0^* - S^*)\frac{q}{\alpha\omega L}(1 - e^{-\frac{\alpha\omega L}{q}}) \qquad (1 - 4 - 21)$$

非均匀沙含沙量组成及检验

● 三部分组成

● 检验: 表1-5。淤积 *S** < *S*, 冲刷 *S** > *S* 。 *S* * 与实测S差别大, 计算S与实测S

很接近。

断面	S^*	$(S_0 - S_0^*) \times e^{-\frac{aL}{\lambda}}$	$(S_0^* - S^*) \times \frac{\lambda}{aL} (1 - e^{-\frac{aL}{\lambda}})$	计算 S	实测 S
编号				(118 / 111)	
2	26.2	5.42	-8.22	23.4	30.8
3	23.4	-1.64	2.24	24.0	27.8
4	13.3	0.33	7.57	21.2	23.5
5	9.77	5.64	3.09	18.5	19.2
6	6.97	8.73	2.50	18.2	17.6
7	7.46	9.56	-0.32	16.7	16.7
8	9.33	9.24	-1.77	16.8	14.8
9	24.6	7.06	-14.8	16.9	14.3

表 1-5 窝头寺含沙量计算公式(1-4-23)中各项的影响

1-4-4 非均匀沙含沙量沿程变化规律

现在从一维不平衡输沙的一般方程(1-4-3)出发来推导非均匀沙的含沙量变化公式,与均匀沙假定 S^* 沿程为直线变化相仿,对于非均匀沙需要假定 $P_{4,i}^*S^*$ 为直线变化,即

$$\frac{dP_{4,l}^*S^*}{dx} = -\frac{P_{4,l,0}^*S_0^* - P_{4,l,1}^*S_L^*}{L} \tag{1-4-25}$$

这一方程即是关于变量 $P_{4,l}S - P_{4,l}^*S^*$ 的一阶线性常微分方程。积分此方程并去掉 脚标L得 $SP_{4,l} = P_{4,l}^*S^* + \left[P_{4,l,0}S_0 - P_{4,l,0}^*S_0^*\right]e^{-\frac{\alpha\omega_l L}{q}} + \left[P_{4,l,0}^*S_0^* - P_{4,l}^*S^*\right]\frac{q}{\alpha\omega_l L}\left[1 - e^{-\frac{\alpha L\omega_l}{q}}\right]$

(1 - 4 - 27)

这是关于1组粒径含沙量沿程变化方程。对1求和,并引进第1组粒径的落距

$$A_l = \frac{q}{\omega_l} \tag{1-4-28}$$

则有

$$S = S^{*} + \left\{ S_{0} \sum_{l=1}^{n} P_{4,l,0} e^{-\frac{\alpha L}{\lambda_{l}}} - S_{0}^{*} \sum_{l=1}^{n} P^{*}_{4,l,0} e^{-\frac{\alpha L}{\lambda_{l}}} \right\}$$
$$+ \left\{ S_{0}^{*} \sum_{l=1}^{n} P_{4,l,0}^{*} \frac{\lambda_{l}}{\alpha L} (1 - e^{-\frac{\alpha L}{\lambda_{l}}}) - S^{*} \sum_{l=1}^{n} P^{*}_{4,l} \frac{\lambda_{l}}{\alpha L} (1 - e^{-\frac{\alpha L}{\lambda_{l}}}) \right\}$$

在明显冲淤条件含沙量沿程变化公式简化

在式 $P_{4,l}^* = f(P_{4,l}, P_{1,l,0})$ 及(1-4-27)、(1-4-29)中共有S、 $P_{4,l}$ 、 $P_{1,l,0} P_{4,l}^* (l = 1, 2, ..., n) 3n + 1$ 个未知数,和3n+1个方程。理论上可解出,实际上很麻烦。现在我们研究在明显冲淤条件下,它们的简化。我们已证明在明显淤积时 $P_{4,l}^* = P_{4,l}$;明显冲刷时 $P_{4,l}^* = P_{4,l}$ 。此时含沙量方程大为简化:

$$SP_{4,l} = P_{4,l}S^* + (S_0 - S_0^*)P_{4,l,0}e^{-\frac{\alpha L}{\lambda_l}} + \left[S_0^*P_{4,l,0} - S^*P_{4,l}\right]\frac{\lambda_l}{\alpha L}(1 - e^{-\frac{\alpha L}{\lambda_l}}) \qquad (1 - 4 - 30)$$

$$S = S^* + (S_0 - S_0^*)\sum_{l=1}^n P_{4,l,0}e^{-\frac{\alpha L}{\lambda_l}} + S_0^*\sum_{l=1}^n P_{4,l,0}\frac{\lambda_l}{\alpha L}(1 - e^{-\frac{\alpha L}{\lambda_l}}) - S^*\sum_{l=1}^n P_{4,l}\frac{\lambda_l}{\alpha L}(1 - e^{-\frac{\alpha L}{\lambda_l}})$$

此时恰好有 S、 $P_{4,l}$ 等 n+1 个未知数和 n+1 个方程 (包括 $\sum P_{4,l} = 1$),求解时就简单得多了。

(1 - 4 - 31)

非均匀含沙量沿程变化的验证

为了验证含沙量沿程变化公式,在图1-7中绘出了打渔张窝头寺沉沙条渠, 荆江丢丢垸放淤区,黄河陈垓输沙渠道等实测含沙量与根据式(1-4-31)计算 的对比,可见符合是很好的。图1-8为荆江中洲子人工裁弯后新河冲刷量随时间 变化^[22],可见与实测符合很好,说明含沙量计算是可靠的。其次在图1-9列出了 丹江口水库滞洪期1967年冲淤过程验证^[23],其中有相当一段时间冲刷。表1-6中 列出了三门峡水库1960.7.1~1989.6.3冲淤过程验证^[24]。

年日日	时段		累计		在日日	时段		累计		
千万日	计算	实测	计算	实测	千万日	计算	实测	计算	实测	
60.7.1-0.31	1.398	1.883	1.398	1.883	75.6.30	1.39	1.83	29.701	29.837	
61.6.30	0.347	1.683	1.745	3.566	75.10.31	-1.46	-1.97	28.241	27.567	
61.10.31	7.598	9.68	9.343	13.246	76.6.30	1.3	1.4	29.541	28.967	
62.6.30	1.934	1.47	11.277	14.716	76.10.31	-1.37	-1.11	28.171	27.857	
62.10.31	4.498	4.108	15.775	5.775 18.824		0.94	1.14	29.111	28.997	
63.6.30	1.965	0.804	17.74	19.628	77.10.31	0.49	0.35	29.601	29.347	
63.10.31	4.71	3.888	22.45	23.516	78.6.30	0.79	1.3	30.391	30.647	
64.6.30	1.405	1.084	23.85	24.6	78.10.31	-1.43	-1.75	28.961	28.897	
64.10.31	12.571	11.56	36.426	36.16	79.6.30	0.93	1.61	29.891	30.507	
65.6.30	-3.082	-3.231	33.344	32.929	79.10.31	-1.14	-2.11	28.751	28.397	
65.10.31	-1.583	-1.189	31.761	31.74	80.6.30	0.93	1.58	29.681	29.977	
66.6.30	-0.772	-0.798	30.989	30.942	80.10.31	-0.83	-1.4	28.851	28.577	
66.10.31	1.172	1.645	32.161	32.587	81.6.30	0.79	1.01	29.641	29.587	
67.6.30	-1.18	-1.253	30.981	31.334	81.10.31	-1.74	-1.91	27.901	27.677	
67.10.31	2.16	2.072	33.141	33.406	82.6.30	1.04	1.21	28.941	28.887	
68.6.30	-0.92	-1.094	32.221	32.312	82.10.31	-0.47	-0.84	28.471	28.047	
68.10.31	0.27	0.289	32.491	32.601	83.6.30	1.19	1.5	29.661	29.547	
69.6.30	-0.35	-0.769	32.141	31.832	83.10.31	-1.69	-1.56	27.971	27.987	
69.10.31	-0.57	-1.014	31.571	30.818	84.6.30	1.08	1.09	29.051	29.077	
70.6.30	0.51	0.232	32.081	31.05	84.10.31	-1.02	-1.25	28.031	27.827	
70.10.31	-1.72	-1.486	30.361	29.564	85.6.30	0.52	0.8	28.551	28.627	
71.6.30	-0.04	-0.097	30.321	29.467	85.10.31	-0.53	-1.08	28.021	27.547	
71.10.31	-0.55	-0.462	29.771	29.005	86.6.30	0.98	0.8	29.001	28.347	
72.6.30	0.05	-0.332	29.821	28.673	86.10.31	-1.18	-0.69	27.821	27.657	
72.10.31	-1.36	-0.898	28.461	27.775	87.6.30	0.84	0.74	28.661	28.397	
73.6.30	1.13	0.97	29.591	28.745	87.10.31	-0.06	-0.24	28.601	28.157	
73.10.31	-1.59	-1.6445	28.001	27.1	88.6.30	0.97	0.98	29.571	29.137	
74.6.30	0.76	1.237	28.761	28.337	88.10.31	-1.11	-1.33	28.461	27.807	
74.10.31	-0.45	-0.63	28.311	27.707	89.6.30	0.96	1.08	29.421	28.887	

表1-6 三门峡水库淤积计算及实测成果总表(1960.7-1989.6)(单位: 10⁸m³)

非均匀沙公式与非均匀沙公式计算含沙量的差别

	衣1-7 云云机构为伊力非构为伊内并云式内比												
断面号	实测 S	计算 S()	河段相对长度										
	(kg/m^3)	(kg/m ³) 公式(1-4-21) 公式		L / λ									
丢1	1.66												
丢2	1.63	1.66	1.65	0.828									
丢7	1.40	1.11	1.23	1.19									
丢9	0.931	0.313	0.600	2.34									
丢 11	0.214	0.027	0.198	8.52									

表 1-7 丢丢垸均匀沙与非均匀沙计算公式对比

 $\omega = \sum_{l=1}^{n} P_{4,l} \omega_{l}$

(1 - 4 - 40)

(1 - 4 - 41)

 $\boldsymbol{\omega}^* = \left[\sum_{l=1}^n P_{4,l}\boldsymbol{\omega}_l^m\right]^{\frac{1}{m}}$

1-5 悬移质级配变化的规律

1-5-1 悬移质级配变化的一般方程 当恢复饱和系数为常数时,不平衡输沙的基本方程为式(1-4 -3)

$$\frac{l(P_{4,l}S)}{dx} = -\frac{\alpha \omega_l}{q} \Big[P_{4,l}S - P_{4,l}^* S^* \Big]$$

就1对上式求和得

$$\frac{dS}{dx} = -\frac{\alpha}{q}(\omega S - \omega^* S^*)$$

此处

$$\omega = \sum_{l=1}^{m} P_{4,l} \omega_l$$

$$(1-5-1)$$

$$\omega^* = \sum_{l=1}^{m} P_{4,l}^* \omega_l$$

$$\frac{d(P_{4,l}S)}{dS} = \frac{\omega_l P_{4,l} S - \omega_l P_{4,l}^* S^*}{\omega S - \omega^* S^*}$$

$$P_{4,l}^* = \frac{\omega^*}{\omega_l} P_{1,l}$$

 $\frac{dP_{4,l}}{dS} = -\frac{P_{4,l}}{S} + \frac{\omega_l}{\omega} \frac{S}{\omega S - \omega^* S^*} P_{4,l} - \frac{\omega^* S^*}{\omega S - \omega^* S^*} \frac{P_{1,l}}{S} \qquad (1-5-3)$ 这就是悬移质级配的微分方程。从该方程可看出,悬移质级配 $P_{4,l}$ 与 $S \ S^* \ \omega_l$ 以及有效床沙级配 $P_{1,l}$ 有关。

悬移质级配变化的另一形式(考虑床沙变化)

$$P_{1,l} = \frac{S_{M,l} + S_0 P_{4,l,0} - SP_{4,l}}{S_M + S_0 - S}$$
(1-5-4)

$$P_{1,l} = \frac{P_{1,l,0} + \frac{S_0}{S_M} P_{4,l,0} - \frac{S}{S_M} P_{4,l}}{1 + \frac{S_0}{S_M} - \frac{S}{S_M}}$$
(1-5-5)

$$\lambda^* = \frac{S - S_0}{S_M} = \frac{S - S_0}{S_0} \frac{S_0}{S_M} = -\lambda \frac{S_0}{S_M}$$
(1-5-6)

$$\frac{S}{S_{M}} = \frac{S}{S_{0}} \frac{S_{0}}{S_{M}} = (1 - \lambda) \frac{S_{0}}{S_{M}}$$
(1-5-7)

(1 - 5 - 10)

$$P_{1,l} = \frac{P_{1,l,0} + \frac{S_0}{S_M} \left[P_{4,l,0} - (1 - \lambda) P_{4,l} \right]}{1 - \lambda^*}$$
(1-5-9)

将式 (1-5-5) 代入 (1-5-3), 并略加变换, 遂有

$$\frac{dP_{4,l}}{dS} + \frac{P_{4,l}}{S} \left[1 - \frac{\omega_l}{\omega} \frac{\omega s}{\omega S - \omega^* S^*} - \frac{\omega^* S^*}{\omega s - \omega^* S^*} \frac{\frac{S}{S_M}}{1 + \frac{S_0 - S}{S_M}} \right] = -\frac{\omega^* S^*}{\omega s - \omega^* S^*} \frac{P_{1,l,0} + \frac{S_0}{S_M} P_{4,l,0}}{1 + \frac{S_0 - S}{S_M}}$$
(1 - 5 - 10)

1-5-2 淤积时悬移质级配的分选 对于明显淤积的情况,不平衡输沙的方程为式(1-4-4),即

$$\frac{d(P_{4,l}S)}{dx} = -\frac{\alpha\omega_{l}P_{4,l}}{q} \left[S - S^{*}\right]$$
$$\frac{dS}{dx} = -\frac{\alpha\omega}{q} \left[S - S^{*}\right]$$
$$\frac{d(P_{4,l}S)}{dx} = \frac{\omega_{l}}{\omega} P_{4,l}$$

$$\frac{dP_{4,l}}{P_{4,l}} = \left(\frac{\omega_l}{\omega} - 1\right) \frac{dS}{S}$$
(1-5-11)
$$_{l} = P_{4,l,0} e^{\int_{s_0}^{s} \left(\frac{\omega_l}{\omega} - 1\right) \frac{dS}{S}}$$
(1-5-12)

由于 ω 是随S而变的隐函数,故上式的积分不能直接得出。但是可以采用积分中值定理, ω 可取 $\omega(S_0)$ 至 $\omega(S)$ 中的某个值 ω_m ,使

P

 $P_{4,l}$

$$\int_{S_0}^{S} \left(\frac{\omega_l}{\omega} - 1\right) \frac{dS}{S} = \left(\frac{\omega_l}{\omega_m} - 1\right) \int_{S_0}^{S} \frac{dS}{S}$$

于是得到

$$P_{4,l} = P_{4,l,0} \left(\frac{S}{S_0}\right)^{\frac{\omega_l}{\omega_m} - 1} = P_{4,l,0} \left(1 - \lambda\right)^{\frac{\omega_l}{\omega_m} - 1}$$

(1 - 5 - 13)

明显淤积时悬移质级配计算及检验 为了确定*a*_m,可按条件

$$\sum_{l=1}^{n} P_{4,l} = \sum_{l=1}^{n} P_{4,l,0} \left(1 - \lambda\right)^{\frac{\omega_l}{\omega_m} - 1} = 1 \qquad (1 - 5 - 14)$$

求出。此时,当已知λ时,可由函数

$$y = 1 - \frac{1}{1 - \lambda} \sum_{l=1}^{n} P_{4,l,0} \left(1 - \lambda \right)^{\frac{\omega_l}{\omega_m}} = F(\omega_m) \qquad (1 - 5 - 15)$$

的曲线来确定。此函数恒递减,它的唯一零点就是*ω_m*,具体确定方法,详见 文献[21]。

式(1-5-13)清晰地指出,出口断面的悬移质级配 $P_{4,l}$ 取决于进口断面的悬移质级配 $P_{4,l0}$,淤积的有效沉速 ω_m ,本组粒径沉速 ω_l 及淤积百分数 λ ,而与河段的水力因素无直接关系。至于与后者的间接关系,则通过 λ 来反映。式(1-5-14)还表明如 $\frac{\alpha_l}{\omega_m} > 1$,即对于较粗的颗粒, $P_{4,l} < P_{4,l0}$;如 $\frac{\alpha_l}{\omega_m} < 1$,即对于较细的颗粒, $P_{4,l} > P_{4,l0}$ 而当 $\frac{\alpha_l}{\omega_m} = 1$ 时, $P_{4,l} = P_{4,l0}$ 即级配不变。可见该式描述了悬移质细化过程,这与悬移质 淤积的实际分选现象是完全一致的。

由于泥沙在横断面内分布不均匀,有的缓水区只有细沙进去, 致使分选稍慢,在实际计算中采用一比较简单的修正办法^[1]即在 式(1-5-13)中的指数^{*a*}_{*a*}上再加小于1的指数^[1],即

v - 1

$$P_{4.l} = P_{4.l.0} (1 - \lambda)^{(\frac{\omega_l}{\omega_m})}$$

59

(1-5-16)

图 1-11 严家台放淤区淤积分选曲线

• •	> \ (4					· · · · · ·	• •				
					该幺	组粒	径泥	沙的	百分	数	
断面	时 段	输入量	淤积百		0.005	0.01	0.025	0.05	0.10	0.25	0.50
名 称	(年、月)	(亿吨)	分数入	< 0.005	~	~	~	~	~	~	~
					0.01	0.025	0.05	0.10	0.25	0.50	1.0
潼关	64.3-64.10	23.4		14.0	9.9	17.5	25.4	28.2	4.3	0.6	0.1
北村(实测)	64.3-64.10	13.4	0.426	24.5	13.9	21.1	25.3	13.7	1.3	0.2	
北村(计算)	64.3-64.10			23.2	15.2	22.7	23.6	14.6	0.7		

表 1-8 黄河三门峡水库长时段平均级配实测与计算对比

表 1-9 汉江丹江口水库长时段平均级配实测与计算对比

			该组粒径泥沙的百分数								Barre C
断面	时 段	输入量	淤 积		< 0.01	0.01	0.025	0.05	0.10	0.25	0.50
名 称	(年、月、日)	(10 ⁶ 吨)	百分数			~	~	~	~	~	~
			λ			0.025	0.05	0.10	0.25	0.50	1.0
35-1	70.8.17-10.8	12.05			19.8	20.9	24.8	26.6	6.1	1.8	
24-1(实测)	70.8.17-10.8	5.89	0.51		34.5	28.7	22.9	13.5	0.4	202	
24-1 (计算)	70.8.17-10.8				35.6	29.3	22.7	11.2	1.1	0.1	A

		表 1-10	7	下同 ν 值 ヌ	寸含沙量	计算的影	影响(式	(1-5)	-16))			
		淤和百分数			ž,	<u>及</u>						
断	含沙量	λ $S_0 - S$										
田旦	$\mathbf{S} kg / m^3$	$(\underline{ S_0})$		项目	0.25	0.15	0.10	0.06	0.03	0.01		
5	0				~	~	~	~	~	\sim 0.004	< 0.004	
1	33.9		्रो	: आग	0.15	1.5	6.5	17.1	23.9	15.0	35.1	
-			<u>~</u>		1.0	1.5	5.5	14.0	25.3	17.5	35.1	
2	30.8	0.091	군	v - 1	0.1	0.4	3.8	15.4	25.3	16.4	38.6	
_	20.0	0.071		v = 3/4	0.1	0.6	4.7	15.2	24.7	16.2	38.5	
			算	v = 1/2	0.1	1.0	5.0	15.4	24.0	16.2	38.4	
			实	测	1.1	0.4	4.4	11.7	26.0	16.5	39.9	
3	27.8	0.181	计	v = 1		0	1.3	11.8	28.1	18.0	42.8	
				v =3/4		0	2.5	12.2	25.0	17.6	42.7	
			算	v =1/2		0.4	3.6	13.2	23.0	17.3	42.5	
			实	测	0	0.4	2.5	5.0	18.4	19.7	54.0	
4	23.5	0.307	计	v = 1			0	4.2	24.6	20.7	50.5	
				v =3/4		0	0.2	6.6	23.6	20.0	49.6	
			算	v =1/2		0	1.5	9.2	20.5	18.4	50.4	
			实	测		0	0.5	2.5	13.3	19.9	63.8	
5	19.2	0.434	计	v = 1			0	0.2	15.5	23.3	61.0	
				v =3/4			0	1.1	17.4	22.0	59.5	
			算	v =1/2		0	0.5	4.8	16.2	18.5	60.0	
			实	测		0	0.6	1.1	9.5	22.9	65.9	
6	17.6	0.481	计	v = 1				0	10.4	23.8	65.8	
				v =3/4			0	0.3	13.6	22.2	63.9	
			算	v =1/2		0	0.1	3.0	13.7	18.3	64.9	
			实	测			0	1.2	9.6	20.9	68.3	
7	16.7	0.508	计	v = 1				0	7.3	23.9	68.8	
				v =3/4				0	11.2	22.0	66.8	
			算	v =1/2			0	2.3	12.0	17.7	68.0	
			实	测			0	1.4	4.7	14.2	79.7	
8	14.8	0.563	计	v = 1				0	2.0	22.4	75.6	
				v =3/4				0	6.3	21.1	72.6	
			算	v = 1/2			0	1.3	8.3	16.7	73.7	
			实	测				0	5.6	17.5	76.9	
9	14.3	0.578	计	v = 1				0	1.1	21.6	77.3	
				v =3/4			1 10 20 1	0	5.1	20.8	74.1	
			算	v = 1/2			0	0.8	6.7	16.1	76.4	

1-5-3 明显冲刷时悬移质级配的变化

1-5-3-1 冲刷时补给含沙量级配的分选

冲刷时由河床净冲起的含沙量ΔS,将称为补给含沙量,相应地级配称为补给 含沙量级配。由于冲刷时,细沙冲起的多,粗沙冲起的少,而使床沙级配逐渐发 生粗化,相应地补给含沙量级配也逐渐变粗,这是另一种分选现象。

就公式(1-4-37)对1求和后得到

$$\frac{S}{x} = -\sum_{l=1}^{m} \frac{\alpha \omega_{l} \widetilde{P}_{4l}}{q} (\Delta S - \Delta S^{*}) = -\frac{\alpha \omega^{*}}{q} (\Delta S - \Delta S^{*}) \quad (\not{\forall} \qquad)$$

$$\frac{dS}{dx} = -\sum_{l=1}^{m} \frac{\alpha \omega_{l} \widetilde{P}_{4l}}{q} (\Delta S - \Delta S^{*}) = -\frac{\alpha \omega^{*}}{q} (\Delta S - \Delta S^{*})$$

$$\frac{d(\widetilde{P}_{4l} \Delta S)}{d(\Delta S)} = \frac{\omega_{l}}{\omega^{*}} \widetilde{P}_{4l} \qquad (1-5-17)$$

$$\frac{d\widetilde{P}_{4l}}{\widetilde{P}_{4l}} = (\frac{\omega_{l}}{\omega^{*}} - 1) \frac{d\Delta S}{\Delta S} \qquad (1-5-18)$$

设河床上最大可冲含沙量为 ΔS_M (即冲光含沙量),对应的补给含沙量的级配显然为最初床沙级配 P_{110} ,在此条件下积分上式遂有

$$(\frac{P_{1.l.0}}{\widetilde{P}_{4.l}}) = (\frac{\Delta S_M}{\Delta S})^{\frac{\Delta J_M}{\omega_h}}$$
$$\frac{\Delta S}{\Delta S_M} = \lambda$$

(1-5-19)

为冲刷百分数,也即补给含沙量对最大可冲含沙量的比值,显然它是反应冲刷程度的。

$$\widetilde{P}_{4,l} = P_{1,l,0} \lambda^* \frac{\omega_l}{\omega_{\pm}}^{-1} \tag{1-5-20}$$

与淤积分选时确定中值沉速的方法相同,当 χ^* 一定时, ω_m^* 由下式给出

$$\sum P_{1.l.0} \lambda^* \frac{\omega_l}{\omega_m^*} = 1 \tag{1-5-21}$$

同样 ω_m^* 可称为冲刷百分数为 λ^* 时的冲刷有效沉速。

由式 (1-5-20) 知, 当 $\frac{a_{l}}{a_{m}^{*}}$ >1,即对比较粗的沙, $\lambda^{*}\frac{\omega_{l}}{\omega_{m}^{*}}$ -1
(1, $\tilde{P}_{4,l} < P_{1,l,0}$;
当 $\frac{a_{l}}{a_{m}^{*}} < 1$, $\lambda^{*}\frac{\omega_{l}}{\omega_{+}}$ -1>1, $\tilde{P}_{4,l} < P_{1,l,0}$,可见,净冲起的级配 $\tilde{P}_{4,l}$ 恒细于原床沙 $P_{1,l,0}$ 。式
(1-5-20) 还表明净冲起级配取决于原床沙级配 $P_{1,l,0}$,冲刷时的有效沉速 ω_{m}^{*} ,
本粒径组的沉速 ω_{l} ,以及冲刷百分数 λ^{*} 。

冲刷百分数 λ*表示河床冲刷和粗化的程度。考虑到深层床沙并不参予粗 化,因此在实际应用时, λ*被理解为冲刷厚度 Δ h与参于冲刷厚度之比。根据 三门峡水库蓄水期黄河下游冲刷资料分析和一些冲刷河道沙波运行资料,参与 冲刷的厚度可取为 Δ h +1 m。这里1米表示由于局部冲淤与沙波运动引起的扰 动厚度,即在这个厚度内的泥沙参予冲刷,而在以下的则不参与。因此有

$$\lambda^* = rac{\Delta h}{1 + \Delta h}$$

(1-5-22)

1-5-3-2 冲刷时悬移质级配的变化

前面已经指出,在明显冲刷时尽管悬移质与床沙不断交换,仍可假定进口断面带来的泥沙数量和级配维持不变,而冲刷仅表现为从河床补充一些新的颗粒。 这样,确定冲刷时出口断面的悬移质级配就较简单了,只需将补给含沙量级配与进口断面级配迭加就行。事实上,由式(1-4-32)及(1-4-33)有

$$P_{4.l} = \frac{S_0}{S_0 - \Delta S} P_{4.l.0} + \frac{\Delta S}{S_0 - \Delta S} \tilde{P}_4$$
$$\frac{1}{1 - \lambda} = \frac{S_0}{S_0 - \Delta S} = \frac{S_0}{S}$$
$$1 - \frac{\lambda}{1 - \lambda} = \frac{\Delta S}{S_0 - \Delta S} = \frac{S - S_0}{S}$$

(1 - 5 - 24)

(1-5-25)

67

有

$$P_{4.l} = \frac{P_{4.l.0} - \lambda \tilde{P}_{4.l}^*}{1 - \lambda}$$

将式(1-5-20)代入,遂有[25]

$$P_{4.l} = \frac{1}{1-\lambda} \left[P_{4.l.0} - \frac{\lambda}{\lambda^*} P_{1.l.0} \lambda^* \frac{\omega_l}{\omega_m^*} \right]$$

冲刷时出口断面悬移质级配验证

00.5

图 1-19 1961~1964 年艾山悬移质平均级配

0.025

粒径/mm

实测级配

计算级配

0.01

0.005

0.05

0

0.25 0.10

图 1-20 1964 年艾山悬移质平均级配

ο

0.10

0.05 0.25

粒径/mm

实测级配

计算级配

0.01

0.005

1-5-4 微冲微淤下悬移质级配的变化

不少情况中,粗细颗粒冲淤性质是不一样的,即有的冲,有的淤。这在微冲 微淤过程中特别明显。

前面悬移质级配变化的一般方程(1-5-10),本来对微冲微淤也是正确的, 而且级配与水力因素没有直接关系。但是由于要对隐函数积分两次,两次引进中 值,最后不便确定。然而由于微冲微淤可以不考虑计算时段内床沙粗化,故可直 接由分组含沙量公式(1-4-27)求出。该式各项被S除后得

$$P_{4,l} = P_{4,l,o} \frac{S_0}{S} e^{-\frac{\alpha \omega_l L}{q}} + P_{4,l,0}^* \frac{S_0^*}{S} \left[\frac{q}{\alpha \omega_l L} (1 - e^{-\frac{\alpha \omega_l L}{q}}) - e^{-\frac{\alpha \omega_l L}{q}} \right] + P_{4,l}^* \frac{S^*}{S} \left[1 - \frac{q}{\alpha \omega_l L} (1 - e^{-\frac{\alpha \omega_l L}{q}}) \right]$$
(1-5-26)

引进淤积百分数λ和落距λ,后有

ω

ω

$$P_{4,l} = \frac{P_{4,l,0}}{1-\lambda} e^{-\frac{\alpha L}{\lambda_l}} + \frac{\omega_0^*}{\omega_l} P_{1,l,0} \frac{1}{1-\lambda} \frac{S_0^*}{S_0} \left[\frac{\lambda_l}{\alpha L} (1-e^{-\frac{\alpha L}{\lambda_l}}) - e^{-\frac{\alpha L}{\lambda_l}} \right] + \frac{\frac{\omega^*}{\omega_l} P_{1,l}}{1-\lambda} \frac{S_0^*}{S_0} \left[1 - \frac{\lambda_l}{\alpha L} (1-e^{-\frac{\alpha L}{\lambda_l}}) \right]$$

(1-5-28)

69

其中

由式 (1-5-28) 可以看出三点:第一,若其它参数不变,不论
$$\lambda$$
 为任何值
时,当 $\frac{L}{\lambda_{l}} \rightarrow \infty$ (对应的 $L \rightarrow \infty$) 时, $P_{4,l} = \frac{\omega^{*}}{\omega_{l}} P_{1,l}$,出口断面的含沙量完全由床
沙级配 $P_{1,l}$ 确定,并且满足 $P_{4,l} = P_{4,l}^{*}$;第二,对于河段强平衡,亦即当
 $\lambda = 0, P_{1,l,0} = P_{1,l}, \omega_{0}^{*} = \omega^{*}, P_{4,l} = P_{4,l}^{*}$ 等,由式 (1-5-28)及(1-5-27)得到
 $P_{4,l} = P_{4,l,0}$ 。可见此时该式仍正确;第三,如果不是强平衡,而是弱平衡即 $\lambda = 0$,
则由式 (1-5-27)得到 $P_{4,l} \neq P_{4,l,0}$,并且随着 L 的加大, $P_{4,l,0}$ 的影响不断减弱。
第四,当其它条件固定时, $\frac{S_{0}^{*}}{S_{0}} \propto \frac{S^{*}}{S_{0}}$ 愈大,床沙级配对悬移质影响大,反之,
影响小。这反映了冲刷时床沙级配影响大,淤积时床沙级配影响小。
需要指出的是,将悬移质级配写成式 (1-5-28)的形式可以使其物理意义
明确,但是由于其中包括了 λ ,即 S ,所以不能直接计算出 $P_{4,l}$ 。要确定 $P_{4,l}$,还
必须同时联解式 (1-5-28)及 (1-4-29),同时求出 $P_{4,l}$ 及S。
为此先设 $S' \rightarrow \lambda \rightarrow P_{4,l} \rightarrow S$,直到 $S = S'$ 。

需要强调指出的是,此处 P1,是有效床沙级配。对于一般不平衡 输沙,有效床沙级配可由挟沙能力级配P₄,转化。挟沙能力级配同时 涉及到含沙量级配 P₄₁及床沙级配 P₁₄₁,表达式颇为复杂,最简单的有: $P_{4,l}^* S^*(\omega^*) = P_{4,l} S^* (\mu^*) = P_{4,l} S^* (\mu^*)$ (5 - 163) $\left(\frac{S}{S^{*}(m)} < 1; \quad l = 1, 2 \dots n\right)$ $S^{*}(\omega^{*}) = S + [1 - \frac{S}{S^{*}(\omega)}]S^{*}(\omega^{*}_{1}) \qquad (\frac{S}{S^{*}(\omega)} < 1; l = 1, 2, ..., n)$ (5 - 164) $P_{4,l}^{*} = P_{4,l} \frac{S}{S^{*}(\omega^{*})} + \left[1 - \frac{S}{S^{*}(\omega)}\right] P_{4,l,1}^{*} \frac{S^{*}(\omega_{1})}{S^{*}(\omega^{*})}$ $= P_{4,l} \frac{S}{S^{*}(\omega^{*})} + [1 - \frac{S}{S^{*}(\omega^{*})}]P_{4,l,1}^{*}$ (5 - 165) $\left(\frac{S}{S * (m^*)} < 1; \qquad l = 1, 2, 3, \dots, n\right)$ $P_{1,l} = P_{4,l} \frac{S}{S^*(L)} + \left[1 - \frac{S}{S^*(\omega)}\right] P_{1,l,1} = \frac{P_{4,l}S}{S^*(L)} + \left[1 - \frac{S}{S^*(\omega^*)}\right] P_{1,l,1} \frac{S^*(\omega^*)}{S^*(\omega^*)} \quad (5-166)$ (5-167) $\sum P_{1,l} = \frac{S}{S * (m)} + [1 - \frac{S}{S * (m)}] = 1$ 71

微冲微淤悬移质级配验证

图1-21中曾经用丹江下游冲刷资料,验证了式(1-5-28),可见结果基本符合实际。

1-6 床沙级配变化规律

一般说,床沙级配影响到挟沙能力和含沙量(冲刷时尤其如此),其次,它还影响淤积和冲刷的容重,因此如同悬称质级配一样,床沙级配的变化是不平衡输沙研究的主要内容之一。

1-6-1 明显淤积时床沙级配的变化

在明显淤积时床沙级配即为淤积物级配,它与悬移质级配有简单的关系。由沙量平衡知,第1组粒径的淤积量,等于该粒径组在进口断面的输沙量减去出口断面的输沙量,即

$$\Omega_{l} = (P_{4,l,0}QS_{0} - P_{4,l}QS)\Delta t$$
$$\Omega = (QS_{0} - QS)\Delta t$$

故

$$P_{1.l} = \frac{S_0}{S_0 - S} P_{4.l.0} - \frac{S}{S_0 - S} P_{4.l}$$

引进*λ*后得

$$P_{1,l} = \frac{1}{\lambda} \left[P_{4,l,0} - (1 - \lambda) P_{4,l} \right]$$

(1-6-1)

或者将式 (1-5-13) $P_{4,l}$ 的值代入,遂有

$$P_{1.l} = \frac{P_{4.l.0}}{\lambda} \left[1 - (1 - \lambda)^{\frac{\omega_l}{\omega_m}} \right]$$
(1-6-2)

上式指出,河段淤积物平均级配 $P_{1,l}$ 取决于进口断面的悬沙级配 $P_{4,l,0}$,该组粒径的沉速 ω_l ,淤积有效沉速 ω_m 以及淤积百分数 λ 。对于粗颗粒 $\frac{\omega_l}{\omega_m} > 1$,故 $P_{1,l} > \frac{P_{4,l,0}}{2} [1 - (1 - \lambda)] = P_{4,l,0}$ 。故淤积物级配总是粗于悬移质级配。

断面内淤积物级配与含沙量级配的关系

式(1-6-1)、(1-6-2)只能用来计算河段淤积物的平均级配,不能确 定各断面淤积物级配与悬移质级配的关系。要回答这个问题,可令出口断面与进 口断面无限接近。亦即取*λ*→0时的极限。为此,将式(1-6-2)展开。

$$P_{1,l} = \frac{P_{4,l,0}}{\lambda} \left[1 - \left\{ 1 - \frac{\omega_l}{\omega_m} \lambda + \frac{1}{2} \left(\frac{\omega_l}{\omega_m} \right) \left(\frac{\omega_l}{\omega_m} - 1 \right) \lambda^2 + \cdots \right\} \right]$$

并令 $\lambda \rightarrow 0$,同时注意到此时 $P_{4,l,0} \rightarrow P_{4,l}, \omega_m \rightarrow \omega$ 则有

 $P_{1.l} = \frac{\omega_l}{\omega} P_{4.l.0} \tag{1-6-3}$

此处

$$\boldsymbol{\omega} = \frac{1}{\sum_{l=1}^{n} \frac{P_{1,l}}{\omega_l}} = \sum_{l=1}^{n} P_{4,l} \omega_l$$

(1-6-4)

1-6-2 明显冲刷时床沙级配的变化 $P_{1,l} = \frac{V_{M,l} - \Omega_l}{V_M - \Omega} = \frac{V_M}{V_M} - \frac{\Omega_l}{\Omega} \frac{\Omega_l}{V_W}}{1 - \frac{\Omega}{V_M}} = \frac{P_{1,l,0} - \lambda^* \tilde{P}_{4,l}}{1 - \lambda^*}$ $\tilde{P}_{4,l} = \frac{1}{\lambda^*} [P_{1,l,0} - P_{1,l}(1 - \lambda^*)]$ (1-6-5) $P_{1,l} = P_{1,l,0} \frac{1 - \lambda^*}{1 - \lambda^*}$ (1-6-6) 可见,冲刷后的床沙级配与冲刷前的床沙质级配成比例,还与该组粒径沉速 ω_l ,

可见,秤刷后的床抄级配与秤刷前的床抄顶级配成比例,还与该组粒径优速 ω_{l} 冲刷时有效沉速 ω_{m}^{*} 以及冲刷百分数 λ^{*} 有关。当 $\frac{\omega_{l}}{\omega_{m}^{*}}$ >1 即对于较粗颗粒, $\lambda^{*\frac{\omega_{l}}{\omega_{m}^{*}}} < \lambda^{*}, P_{1,l} > P_{1,l,0}$;反之,当 $\frac{\omega_{l}}{\omega_{m}^{*}} < 1$, 即对于较细颗粒, $\lambda^{*\frac{\omega_{l}}{\omega_{m}^{*}}} > \lambda^{*}, P_{1,l} < P_{1,l,0}$ 可见该式描述的是粗化过程。

比较式 (1-6-2) 与 (1-6-6),可以看出两者的异同。当 $P_{1,l}=P_{1,l0}$, $\lambda^*=(1-\lambda)$ 时,则两式完全一样。即在 $P_{1,l0} > P_{4,l0}$ 的条件下,淤积百分数为 λ 的淤积物级配,与冲刷百分数 $\lambda^*=1-\lambda$ 的床沙级配完全相同。其差别是,随 着 λ 的增加, $P_{1,l}$ 递减;而随着 λ^* 的增加, $P_{1,l}$ 递增,即前者为细化过程,后 者为粗化过程。

冲刷床沙级配验证

78

(一) 床沙质与划分问题1-7-1 床沙质与冲泻质具有统一的挟沙能力规律

实际资料表明床沙质与冲泻质含量确实存在一定差别。主要表现在,在水力因素相近的条件下,冲泻质含量变幅大,而床沙质则较稳定。表1-11列出了长江新厂水文站两次资料。这两次的水力因素 $\frac{V^{2.76}}{h^{0.92}}$ 基本是相同的,但两者的总含沙量差别却很大,而且冲泻质含量差别更大,而床沙质含量较稳定。

编	测验	水深	流速	挟沙能力	冲泻质含量	床沙质挟沙能力	A Maria
号	日期	h(m)	V	S^*	S_0^*	S_1^*	$\frac{V^{2.76}}{\sqrt{2.76}}$
			(m/s)	(kg/m^3)	(kg/m^3)	(kg/m^3)	$h^{0.92}$
1	1964. 3. 17	4.14	0.954	0.200	0.075	0.125	0.238
2	1963. 6. 23	5.15	1.06	2.57	2.51	0.06	0.245

表1-11 长江新厂水文站冲泻质与床沙质实测资料

水量百分数的导出及意义

代入下式并化简后遂有

$$P_{1,l} = \frac{S_l^*}{S^*(l)} = \frac{P_{4,l}^* S^*}{S^*(l)} = \frac{P_{4,l}^* \omega_l^{0.92}}{\sum_{l=1}^n P_{4,l}^* \omega_l^{0.92}}$$
(1-7-1)

这样式(1-3-6)为

$$S^{*}(l) = \frac{\sum_{l=1}^{n} P_{4,l}^{*} \omega_{l}^{0.92}}{P_{4,l}^{*} \omega_{l}^{0.92}} S_{l}$$

在强平衡条件下,根据等式(1-3-3) $P_{41}^* = P_{41}$ 则上式为

$$S^{*}(l) = \frac{\sum_{l=1}^{n} P_{4,l} \omega_{l}^{0.92}}{P_{4,l} \omega_{l}^{0.92}} S_{l}^{*}$$
(1-7-3)

(1 - 7 - 2)

公式(1-7-2)或(1-7-3)将非均匀沙中分组挟沙能力S^{*},与第1组粒径均匀沙 的挟沙能力联系起来了。

应该指出的是从悬移质与床沙交换出发, P1, 的物理意义是床沙级配, 但是从水 流挟带不均匀泥沙的结构考虑, P1,也可是挟带第1组泥沙的水量百分数。 82

设各组泥沙的水量为 Q_l^* , 沙量为 G_l^* 则显然有

$$S^{*}(l) = \frac{G_{l}^{*}}{Q_{l}^{*}} \tag{1-7-4}$$

$$\frac{Q_l^*}{Q^*}S^*(l) = K_l^*S^*(l) = \frac{G_l^*}{Q^*} = \frac{G_l^*}{G^*}\frac{G^*}{Q^*} = P_{4,l}^*S^*$$
(1-7-5)

$$G^*=\sum_{l=1}^n G_l^*$$

$$(1 - 7 - 6)$$

(1)

 $Q = \sum_{l=1}^{n} Q_{l} \qquad (1 - 7 - 7)$

以上有关符号右上角的*表示与挟沙能力相应的值。比较式(1-7-5)及(1-3-6)可知,

$$P_{1,l} = \frac{Q_l^*}{Q^*} = K_l^*$$

即床沙级配恰为挟带第1组泥沙所需的水量百分数[7]。

-8)

当将 $P_{1,l}$ 理解成水量百分数 K_l^* 后,式(1-7-5)的物理意义就更为明确。事实上,此时有

$$S^{*}(l) = \frac{P_{4,l}S}{K_{l}^{*}}$$
(1-7-9)

 $S^{*}(l) = \frac{P_{4,l}S^{*}}{P_{1,l}}$ (1-7-10)

该式右边分子表示单位水体(如一个立方米)所含的不均匀沙中 l组粒径泥沙的重量,除以水量百分数 K_l^* 后,则化为单位水体全 部含l组粒径的均匀沙时的挟沙能力,而按照定义,它就是 $S^*(l)$ 。

上面是根据挟沙能力引进的水量百分数。如果是输沙强平衡,

$$K_{l} = \frac{P_{4,l}\omega_{l}^{0.92}}{\sum_{l=1}^{n} P_{4,l}\omega_{l}^{0.92}}$$

或

85

(1 - 7 - 1)

床沙质与冲泻质挟沙能力具有统一挟沙能力规律

我们再将新厂和高村两站资料中属于冲泻质与床沙质范围的粒径组分别合并起来,按照上式得到关系式

点绘了图 1-33、图 1-34,这里 k 表示冲泻质范围内的最大粒径组。该两图进 一步说明只要考虑了水量百分数后,不论床沙质与冲泻质均存在着明确的挟沙 能力关系,并且两者的关系是统一的。在该两图中还点绘了全沙挟沙能力关 系。从中看出,全沙与床沙质和冲泻质的关系是完全一致的。

1-7-2 床沙质与冲泻质是否同时处于饱和

以往有一种观点,根据床沙质在 床沙中大量存在而且粒径较粗,因 而冲刷时既有大量的补给,淤积时 又容易沉落,所以认为床沙质总是 容易饱和的。另一方面又根据冲泻 质在河床中基本上没有补给以及难 于沉落,从而认为冲泻质是难于饱 和的。因此,研究挟沙能力,只能 研究床沙质部分的挟沙能力。这种 看法究竟对不对,当床沙质处于饱 和时,冲泻质是处于饱和,还是处 于不饱和,有必要进行研究。

现在用表A的资料加以说明

表 A 床沙质与冲泻质符合统一挟沙能力规律的分析

	I新厂水文	站 1964 年 3	3月17日	Ⅱ新厂水文站 1963 年 6 月 23 日		
项目	冲泻质	床沙质	全沙	冲泻质	床沙质	全沙
$\left(\frac{V^{-3}}{h}\right)^{0.92}$	0.238	0.238	0.238	0.245	0.245	0.245
$S_{w^{\gamma}} S_{B^{\gamma}} S_{\gamma}$	0.075	0.125	0.200	2.51	0.060	2.57
$P_{4,w}, P_{4,B}, \sum P_{4,l},$	0.372	0.628	1.000	0.977	0.023	1.000
$P'_{1,w}, P'_{1,B}, \sum P'_{1,l,1}$	0.101	0.899	1.000	0.521	0.479	1.000
$\omega_w^{0.92}, \omega_B^{0.92}, \omega$	0.000521	0.0276	0.0192	0.000793	0.0309	0.00150
$S^*(\omega_w), S^*(\omega_B), S^*(\omega)$	0.777	0.147	0.211	5.25	0.135	2.78
$P'_{1,w}S^*(\omega_w), P'_{1,B}S^*(\omega_B), S^*(\omega)$	0.078	0.132	0.211	2.74	0.065	2.78
$\frac{S_{w}}{P_{1,w}'}, \frac{S_{B}}{P_{1,B}'}, S$	0.743	0.139	0.200	4.82	0.125	2.57

河 段	时	不 同 粒 径 平 均 年 冲 淤 量 (10 ⁴ t)							年 冲 淤 统 计 (10 ⁴ t)		
名 称	期	< 0.01	0.01~	0.025	0.05 $^{\sim}$	0.10~	0.25 $^{\sim}$	0.50 $^{\sim}$	冲 淤 量	冲 刷	淤积
			0.025	$^{\sim}$ 0.05	0.10	0.25	0.50	1.00		皇	量
汉 江 裏 阳 至 皇 庄 段	1974 - 1984	-1652.3	-2208.9	-2693.4	-4571.0	-4055.9	+909.1	+215.1	-14057.3	15181.5	1124.2
汉 江 皇 仙 至 桃	1974 - 1979	-592.5	-590.7	-887.5	-420.8	+648.9	+833.4		-1009.2	2491.5	1482.3
汉 江 皇 庄 至 仙 桃	1980 - 1984	-2770.7	-2120	-2726.8	-4750.6	-2707	+1156.3	+136	-13782.8	15075.1	1292.3
黄 河 艾 山 至 利 津	1971	- 8 3 0	-3830	-2050	+13450	+11360			+8100	6710	14810
丹 江 (河 油 沟)	1980- 1983	-694	-209	-376	+497	+704	+1787	+1036	+2745	1279	4024
丹口(河油沟) (河油沟)	1984- 1987	- 4 1 8	- 3 4 7	- 4 4 3	- 3 1 2	-234	+ 3 0 6	+ 5 2 0	-928	1754	826
黄 河 黄 山 利 2 津 1	1950. 7 ~1960 . 6	- 1 6 6 0		2060	6800				+7200	1660	8860
黄 河 黄 丁 丁 1 千 1 二 1	1964. 44 ~ 1973. 10	- 2 1 0	0	2900	10800			+11600	2100	13700	

表 7 粗细泥沙交换的实际资料

1-7-3 划分床沙质与冲泻质是否必要

根据上面的讨论从研究挟沙能力看,对于实际悬移质颗粒(D>0.001mm), 当含沙量不是很大时,按照补给条件,即床沙级配,划分床沙质与冲泻质是没有 理论根据的。因此划分并不必要。

- 不存在床沙质饱和,冲泻质不饱和。
- D>0.001mm颗粒仍然服从扩散方程。
- 不划分,引用非均匀沙挟沙能力不平衡输沙的方法更能反映悬移质运动, 更全面更有效:如粗细颗粒冲淤分选;所谓中泻质形成异异重流;图1-1, D<0.004mm很难淤等。

如果按照过去的习惯划分,此时去掉冲泻质后,分析床沙质挟沙能力应按照

式 (1-7-13) 进行, 即采用
$$\frac{S_b^*}{P_{1,b}'} \sim \frac{V^3}{gh\omega_b}$$
才正确。