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Abstract: In this paper, the state-of-the-art technologies for river sedimentation and morphology modeling
are comprehensively reviewed. Emphasis is on computational modeling, which includes mathematical
models and closures, numerical methods, verification and validation, model integration, and applications.
Several important areas of future research are recommended.
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1 INTRODUCTION

River sedimentation and morphological processes are among the most complex and least
understood phenomena in nature. Due to the fact that they intimately affect on our living
conditions, scientists and engineers have been looking for better tools to improve our
understanding and enhance the quality of our lives ever since the beginning of human
civilization. In early times, the research methodologies were primarily based on field
observation and physical modeling. This lecture is focused on the methodologies of
mathematical modeling, more precisely numerical-empirical modeling. Sometimes, it is
simply referred to as “computational Modeling”.

The initial attempts of significance in application of mathematical models in conjunction
with empirical functions obtained from laboratory experiments to the investigation of river
sedimentation and morphological processes can be found in the 1950s. The branch of research
was intensified and broadened in the 1970s. Since then, a number of 1-D models (e.g., Cunge
et al., 1980; Thomas, 1982; Rahuel et al., 1989; Wu and Vieira, 2002) were applied to
sedimentation studies in reservoirs and rivers. More recently, numerous 2-D and 3-D
numerical-empirical models (e.g., Sheng, 1983; Wang and Adeff, 1986; Spasojevic and Holly,
1993; Jia and Wang, 1999; Wu et al., 2000) have been developed to simulate sediment
transport processes and morphological changes in channels with mobile bed and bank, both in
the laboratory and nature.

Like any other science and technology, the river sedimentation modeling has advanced
from the simplified cases to the more and more complex ones with higher and higher levels of
sophistication. In the early development stage, the sediment transport model only considered
either bed load or suspended load with a single representative size. Realistically, sediments in
natural rivers are often heterogeneous (nonuniform) in size, not to mention that they have
variable shape and density. Furthermore, the transport mode changes from bed load to
suspended load or vice versa with flow conditions. Consequently, the single-size, single-mode
sediment transport model without considering the exchange between bed load and suspended
load, nor the hiding/exposure and armoring mechanism has been found highly inadequate.
Therefore, the research of sediment transport models was advanced in the direction of
considering total load of nonuniform sediments.
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Traditionally, the transport of sediment, especially bed load, was simulated based on the
assumption of local or instantaneous equilibrium (saturation) (Thomas, 1982; Spasojevic and
Holly, 1993). Due to the observed spatial and temporal lags between the sediment motion and
water flow, it was found that the traditional equilibrium transport models need to be improved
to take into account the non-equilibrium features of sediment transport, especially under
unsteady flow conditions. Some examples of models with varying level of complication in
simulating non-equilibrium (non-saturated) transport capability have been reported recently
(Bell and Sutherland, 1983; Armanini and di Silvio, 1988; Rahuel et al., 1989; Wu et al.,
2000; Wu and Vieira, 2002).

To meet the needs in engineering practices, the capability of river sedimentation modeling
have been further advanced remarkably in recent years. Many established models are capable
of simulating non-cohesive and cohesive sediment transport, local scouring, channel widening
and meandering, etc. In addition, the integration of channel and watershed models has also
been investigated.

With the constraint of presentation time, this lecture can only address briefly the state of
the art and the feasible future development in river sedimentation modeling.

2 MATHEMATICAL MODELS

The phenomena of flow and sediment transport in rivers are characterized by turbulence,
free-surface variation, bed change, phase interaction, etc. A model capable of including all of
these effects accurately has yet to be developed. At the present, most sediment transport
models have adopted the following assumptions:

(1) Sediment concentration is so low that the interaction between flow and sediment
movement can be neglected. Therefore, the clear-water flow and the sediment advection-
diffusion equations can be solved separately.

(2) Bed change is much slower than flow movement. Therefore, at each time step the flow
can be calculated assuming a “fixed” bed.

(3) The hiding and exposure mechanism in bed material is considered through
the introduction of correction factors in the nonuniform sediment transport capacity
formulas.The interactions among different size classes of moving sediment are ignored. Thus
the transport ofeach size class of sediment can be handled individually.

Based upon the above assumptions, 1-D, 2-D and 3-D governing equations of flow and
sediment transport are developed.

2.1 1-D Model Equations

In 1-D model, the shallow water flow is governed by the well-known St. Venant equations.
The sediment transport can be separated as bed load and suspended load according to
sediment transport modes, as shown in Fig.1, or as bed-material load and wash load according
to sediment sources. The governing equation for the non-equilibrium transport of non-uniform
sediment is

o4C,) 0, 1. o\ )
ot + o +LS (th Qt*k)—(],k (k—1,2,,N) (1)

where ¢ is the time; x is the longitudinal coordinate; Cy is the section-averaged sediment
concentration; Qy is the actual sediment transport rate; Q,« is the sediment transport capacity
or the so-called equilibrium transport rate; L, is the non-equilibrium adaptation length of
sediment transport; and ¢y is the side inflow or outflow sediment discharge from bank
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boundaries or tributary streams per unit channel length; each k represents a sediment size
class; N is the total number of size classes.

Eq. (1) can be applied to bed load, suspended load, bed-material load or wash load,
depending on how the sediment transport rate and the adaptation length are defined. For
example, defining L, =Uh/(aw,,), O, =0C, and Q., = QOC,, , one can rewrite Eq. (1) as
the commonly used suspended-load transport equation with the exchange term
aw, B(C, —C.,,). Here, U is the section-averaged velocity, / is the flow depth, @, is the
settling velocity of sediment particles, « is the non-equilibrium adaptation coefficient or the
recovery coefficient, and C,, is the suspended-load transport capacity. When Eq. (1) is
applied to the bed-material load, the transport rate Qy is the sum of bed-load and suspended-

load transport rates. Eq. (1) can be also applied to wash load, where the adaptation length L, is
assumed to be infinitely large and then the exchange term on the left-hand side is zero.
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Fig. 1 Configuration of Flow and Sediment Transport

The bed deformation due to size class & is determined with

(l—p')(%”} =Li(Q,k ~0n) (=1,2,..,N) (2)

where p’is the bed material porosity; and (8Ab / 8t)k is the bed deformation rate caused by
size class k. In fact, combining Egs. (1) and (2) leads to the sediment continuity equation,
which could be also used to calculate the bed deformation.

It should be noted that as the sediment size increases, the adaptation length L, reduces. As a
result, the exchange term becomes dominant in Eq. (1). In such a case, Eq. (1) reduces to
0, =0, , which is the traditional assumption of local equilibrium. Therefore, the
equilibrium sediment transport model is an extreme or special case of the non-equilibrium
transport model. In the equilibrium transport model, the bed change is determined by the
sediment continuity equation rather than Eq. (2).

The sediment transport capacity can be written in a general form as

O = PuQy (1,2, N) 3)
where py 1s the availability factor of sediment, which is defined here as the bed material
gradation in the mixing layer; Q, is the potential sediment transport capacity for size class &,
which can be determined with the help of empirical relations to be given later.

To account for the variation of bed material gradation in time and space, the bed material is

often divided into several layers at each computational node. The surface layer is the mixing
layer that directly participates in the exchange with the sediment moving with the flow.
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According to mass balance, the following equation for the variation of bed material gradation
in the mixing layer (surface layer) can be derived (see Wu and Vieira, 2002)

a(é,,,pbu:(azbj *(aﬁm_%j (=1,2,.... ) 4)

ot a ) P e T a
where p,, is the bed material gradation in the mixing layer; J,, is the mixing layer thickness,

which is related to bed material size or sand dune height; 0z, /o¢ is the total bed deformation
rate, 0z, /0t =Y. (0z, /ot) 5 py is py when 86, /0t —&z,/0t<0, and p, is the bed

material gradation at the subsurface layer (below the mixing layer) when
00, /0t —0z, /0t >0; The last term on the right-hand side represents the exchange between

the mixing layer and subsurface layer.

The bed material sorting model in Eq. (4) is similar to Karim and Kennedy’s (1982) mixing
layer model, but different from Spasojevic and Holly’s (1993) active layer model in which the
active layer includes the bed load layer and the mixing layer.

2.2 2-D Model Equations
2-D models include two groups, the depth-averaged and width-averaged. The depth-
averaged 2-D model is more often used in river engineering analysis. This model applies to
simulating the shallow water flow and is governed by the depth-integrated continuity and
Navier-Stokes equations:
@+ o(hU) N ohV) _
ot ox oy
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where x and y are the horizontal Cartesian coordinates; / is the flow depth; U and V are the
depth-averaged flow velocities in x- and y-directions; z, is the water surface elevation; g is the
gravitational acceleration; T, T\, T, and 7}, are the depth-averaged turbulent stresses; D,
D,,, D, and D,, are the dispersion terms due to the effect of secondary flow, which are
important in the situations of curved channels; p is the density of fluid; 7, and 7, are the

1 2 2 . 2 2 .
bed shear stresses, determined by 7, =pc UNU"+V" ; 7, =pc VNU"+V" , with
¢, = gn’/h'"”® and n is the Manning’s roughness coefficient; 7., and 7, represent the shear

forces acting on the water surface, usually caused by wind; f. is the Coriolis coefficient.
The depth-averaged transport equation for suspended sediment is

a(th)+8(Uth)+8(Vth):i(gsh%}ri ah%
ot ox oy ox ax ) Oy oy
k=1,2,...,N)
aS ( D) D) D)
%+—y+aw‘gk(aﬂk -C,) (8)
ox Oy
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where C, is the depth-averaged suspended-load concentration; C,, is the suspended-load

transport capacity; & is the turbulence diffusivity coefficient of sediment, determined with
g, =v,/o,, in which o, is the turbulent Prandtl-Schmidt number, usually in 0.5-1.0 or

determined by using van Rijn’s (1989) method; « is the non-equilibrium adaptation
coefficient.
In Eq. (8), S, and S are the dispersion terms to account for the effect of the nonuniform

distributions of flow velocity and sediment concentration. In the nearly straight (or slightly

curved) channels with simple geometry, the dispersion terms are usually neglected, or

combined with either the convection terms by introducing a correction factor or the diffusion

terms by adjusting the diffusivity coefficient (also called the mixing coefficient). In curved

channels, the dispersion terms become more important, which will be discussed in Section 3.8.
The bed-load transport is determined by

ols. 0 o\,.q 1
(gthk)+ (ag;qbk)"' ((;;/ bk)+L_(%k_%*k):0 (=1, 2,... N) ©)

A

where ¢, is the average concentration of bed load at the bed-load zone; ¢, and ¢, are
direction cosine components of bed-load movement, which is assumed to be along the
direction of bed shear; g,, is the bed-load transport rate of k-th size class; g,,, is the

corresponding bed-load transport capacity.
The bed deformation can be calculated using the overall sediment balance equation or the
following equation

. O
(l_p’”)(gj :aa)sk(ck_c*k)+(qbk_qb*k)/Ls (=1, 2,..., N) (10)
k

To close the set of Egs. (8)-(10), formulas for the suspended-load and bed-load transport
capacities C,, and ¢,,, are needed. These formulas can be written in a general form

Co =PuCis Qi =Pudy  (k=1,2,.,N) (11)
where p,, is the bed material gradation at the mixing layer; C; is the potential transport

capacity of size class k of suspended load; and ¢,, is the potential transport capacity of size

class k of bed load.
The variation of bed material gradation in the mixing layer in a depth-averaged 2-D model
is determined by Eq. (4) at each computational node.

2.3 3-D Model Equations
Generally, the 3-D flow field is determined by the following Reynolds-averaged continuity
and Navier-Stokes equations:

ou,
T 12
o (12)
Oy, . or,
au, Q) 1ap 107, 13)
ot ox; pox, pox,

where u, (i=1, 2, 3) are the velocity components; F; includes the external forces, including
the gravity force, per unit volume; p is the pressure; 7, are the turbulent stresses, which

should be determined by using a turbulence model.

For the shallow water flow, the pressure can be assumed to be hydrostatic and all the
vertical components of fluid acceleration can be ignored, thus yielding the quasi 3-D
governing equations as
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where f'is the Coriolis coefficient.

The hydrostatic pressure assumption brings significant simplification to the full three-
dimensional problem of Egs. (12) and (13). However, this assumption is valid only for the
gradually varying open-channel flows. A full 3-D model without hydrostatic pressure
assumption should be used in the regions of the rapidly varying flows, such as flows around
bridge piers, dikes, bendway weirs, etc. Since most environmental flows in rivers, estuaries
and coastal zones can be assumed as shallow water flows, the hydrostatic pressure assumption
has been often adopted. The 3-D models developed by Sheng (1983), Wang and Adeff (1986),
and Casulli and Cheng (1992) are based on the hydrostatic pressure assumption, while those
developed by Wu et al. (2000), and Jia et al. (2001) are not.

As shown in Fig. 1, the sediment transport is divided into suspended load and bed load and
hence the flow domain is divided into a bed-load layer with a thickness & and the suspended-
load layer above it with a thickness 4 —J . The exchange of sediment between the two layers
is through deposition (downward sediment flux) at a rate of D,, and entrainment from the

bed-load layer (upward flux) at a rate of E,, . The distribution of the sediment concentration
in the suspended-load layer is governed by the following convection-diffusion equation:
oc, + 8[(”;‘ _a)ské‘_ﬂ) Cr ] _ 0 (L oc, J

ot Ox ox, |\ o, ox,;

(17)

where ¢, is the local concentration of the k-th size class of suspended load; 6, is the

Kronecker delta with j=3 indicating the vertical direction.
At the free surface, the vertical sediment flux is zero and hence the condition applied is
v, Oc
Xt tw,c, =0 (18)
o, Oz

At the lower boundary of the suspended sediment layer, the deposition rate is D,, = ®,,c,,
while the entrainment rate E,, is
v, Oc
Ey =———%=wm,c,, (19)
o, Oz ‘
where c,,, is the equilibrium concentration at the reference level z =z, + 6, which needs to

be determined using an empirical relation.

In the 3-D model, the bed-load transport is simulated by using Eq. (9), with ¢, and ¢,

being the direction cosines of the bed shear stress these cosines known from the flow
calculation.
The bed change can be determined by either the exchange equation

N Oz 1
(l_pm )(a_tb]k =D, —E, +L_(%k _qb*k) (20)

A
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or the overall sediment mass-balance equation integrated over the water depth /4 (i.e. from z =

zp 10 z):
(1-p, )(%j A | Ot Bl _ @1)
"ot ), Ot ox Oy

where Cy 1s the depth-averaged sediment concentration; and gu. and gu, are the components
of the total-load sediment-transport in x- and y-directions:

h h

v, Oc v, Oc

=a,.q, + || uc, ————* Wz, =a,q, + || ve, ——-—L ldz 22
9 ikx b bk Ji k . ox 9y by bk ;[( k o oy (22)

The bed material sorting in the 3-D model is computed in the same way as in the depth-
averaged 2-D model.

3 MODEL CLOSURE AND AUXILIARY RELATIONS

3.1 Turbulence Model Closures

The turbulent shear stresses in 2-D and 3-D models need to be determined by turbulence
models. Most of the common turbulence closures for river flow are based on the Bossinesq’s
eddy viscosity concept

Ou, Ou,| 2
S T ) 23
b pv’(ax‘, GxJ 37 23)

where k is the turbulent kinetic energy, which is omitted in the zero-equation turbulence
models; v, is the eddy viscosity. The eddy viscosity is usually determined by the parabolic

eddy viscosity model, the mixing length model and the linear &-& turbulence model. The linear
k-& turbulence model includes the standard k-& turbulence model, and the RNG &-¢ turbulence
model.

The Boussinesq’s assumption, which adopts an isotropic eddy viscosity concept for all
Reynolds stress, fails for the flows with sudden changes in mean-strain rate or with “extra”
rates of strain, e.g. curvilinear flows. In such cases, the Reynolds stresses adjust to such
changes at a rate unrelated to the mean flow processes and time scale. To capture this kind of
turbulence-generated flow features, the non-linear k-g& turbulence model, the Reynolds-
stress/flux model and the algebraic stress/flux model should be used (Rodi, 1993).

3.2 Channel Roughness

In natural rivers, the banks and bed usually have different roughness. The bank roughness
elements include bank materials, channel training works, hydraulic structures, vegetation, etc.,
while the bed roughness elements include the rigid materials as well as the movable bed
forms, such as sand ripples, sand dunes, alternate bars, islands, etc. For the banks and rigid
bed, a constant roughness can be used. For the movable bed in an alluvial river, the bed
roughness changes with flow conditions, so the evaluation of bed roughness is more difficult.
Einstein and Barbarossa (1952), Engelund and Hansen (1967), van Rijn (1989), and Wu and
Wang (1999) proposed empirical or semi-empirical methods to calculate the roughness in a
movable bed. However, because these empirical relations usually rely on the data set used and
may give different predictions at different sites or times, it should be cautioned when applying
them in a site-specific study. The most reliable approach to handle the channel roughness is
still the calibration using the available data measured at the study site.

More recently, investigators have tried to introduce a different modeling concept to account
for the effect of vegetation roughness (Shimizu and Tsujimoto, 1994; Lopez and Garcia, 2001;
Wu and Wang, 2004a). The drag force exerted on the vegetation element is considered in the
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momentum equations, and the generation of turbulence due to vegetation is modeled in the &k
and ¢ equations. After the effect of vegetation on flow is considered, its effect on sediment
transport and channel morphology change can also be simulated.

3.3 Non-equilibrium Adaptation Length

The non-equilibrium adaptation length L,, which characterizes the distance for sediment to
adjust from a non-equilibrium state to an equilibrium state, is a very important parameter in
the non-equilibrium transport model. Traditionally, the non-equilibrium adaptation length of
suspended load is given with L =Uh/(aw,) . The coefficient a can be calculated with

Armanini and di Silvio's (1988) method or other semi-empirical methods. Values of «
calculated from these methods are usually larger than 1. However, in practice, « has been
given different values by many researchers, most of them being less than 1. It has been
suggested that a=1 for the case of strong erosion, a=0.25 for strong deposition, and =0.5 for
weak erosion and deposition, as a result obtained from validation tests in many reservoirs and
rivers.

For bed load, Bell and Sutherland (1981) found that the L, is a function of time ¢ in an
experimental case of bed degradation downstream of a dam due to clear water. In numerical
modeling, Wu et al. (2000) have adopted L; as the average saltation step length of sand on the
bed in the laboratory cases, while Rahuel ef al. (1989) used much larger values for L, which
may be from one to two times of the numerical grid length, in the case of natural rivers. One
reason for the disparity is that the non-equilibrium adaptation length L,, especially for bed
load, is closely related to the dimensions of the sediment movements under study, bed forms
and channel geometry, which are significantly different between laboratory and field
situations. In laboratory experiments, sediment transport processes are of small scales, such as
sand saltation, ripples and dunes, while in streams sediment transport processes occur
usually at larger scales in longer periods. More recently, Wu and Vieira (2002) suggested
that the non-equilibrium adaptation length of bed load may be the same as the dimension
of the dominant bed form, such as the length of sand dunes in laboratory flume cases, and
the length of alternate bars in field cases. This suggestion has given very promising results
in a series of applications.

3.4 Non-cohesive Sediment Transport Capacity Formulas

The sediment transport capacity formulas proposed by Meyer-Peter and Mueller (1948),
Dou (1963), Yalin (1972), and van Rijn (1989) are often used to calculate the discharge of
uniform bed load. These formulas are also capable of predicting the total discharge of
nonuniform bed load. For fractional discharge of nonuniform bed load, the pioneering
research was attributed to Einstein (1950), followed by Parker et al. (1982), Wu, Wang and
Jia (2000), and others.

One of the most widely recognized methods for the suspended-load discharge is the
Einstein’s (1950) method, which integrates the product of sediment concentration ¢ and flow
velocity u over the suspended-load zone. The formulas of total discharge of suspended load
proposed by van Rijn (1989) and Zhang (1959, see Zhang and Xie, 1993) are much simpler
than that of Einstein’s and have comparable reliability. Wu, Wang and Jia (2000) established
a formula to directly calculate the fractional discharge of suspended load.

The total discharge of bed-material load can be determined by the methods proposed by
Einstein (1950), Engelund and Hansen (1967), Ackers and White (1973), Yang (1973), and
van Rijn (1989). For fractional discharge of nonuniform bed-material load, the modified
Ackers and White’s (1973) formula (Proffit and Sutherland, 1983), SEDTRA module
(Garbrecht ef al., 1995), and Wu, Wang and Jia (2000).
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The equilibrium near-bed concentration of uniform suspended-load can be determined by
using the methods proposed by van Rijn (1989) and Zyserman and Fredsde’s (1994). For the
fractional near-bed concentration of nonuniform suspended load, the empirical formulas
proposed by Einstein’s (1950) and Garcia and Parker (1991) can be used. However, two
issues should be noted. One is that the measurement of suspended-load concentration near the
channel bed is very difficult. Usually, the near-bed concentrations have to be extrapolated
from the measured sediment concentrations in the upper zone with the aid of an assumed
concentration profile along the water depth. Therefore, the accuracy and reliability of this
analysis are highly dependent on the selection of sediment concentration distribution near the
bed. The other important issue is that different reference levels have been used to define the
near-bed concentration in different formulas.

Because the sediment transport formulas having been developed are mostly empirical or
semi-empirical and have large discrepancy among them, their calibration and validation
are very important. The comparisons of the total-discharge formulas have been performed
by Brownlie (1981), Yang and Wan (1991), and others. Most of these tests show that
Ackers and White’s (1973), Engelund and Hansen’s (1967), Yang’s (1973) and van Rijn’s
(1989) formulas are relatively more reliable for the total discharge of bed-material load.
Ribberink ef al. (2002) and Wu and Wang (2003) tested the formulas for the fractional
discharge of nonuniform bed-material load, and found that Wu, Wang and Jia’s (2000)
formula and the SEDTRA module perform better. However, calibration and validation
using site-specific data is highly recommended before applying a sediment transport
formula to a study of real-life problems.

3.5 Cohesive Sediment Transport Formulas

Fine-grained sediments, such as clay and fine silt, which widely exist in rivers, reservoirs,
lakes, estuaries and coastal waters, are generally cohesive. Because the magnitude of
electrostatical forces acting among these particles is comparable to or larger than that of the
gravity forces, the fine particles may stick together forming aggregates (or called flocs) when
they collide due to Brownian motion of the particles (<0.004mm), the turbulent mixing and/or
the settling. On the other hand, during the transport process, larger flocs may be disaggregated
into finer flocs and single particles due to high shear or large eddy ejection and sweeping.
Therefore, the flocs behave much differently from the non-cohesive single particles. Many
investigators developed numerical models for cohesive sediment transport with special
consideration of flocculation, settling, transport, erosion, deposition and consolidation
processes.

The transport of cohesive sediment is usually treated as suspended load and governed by
Eq. (17). The size of flocs and in turn the settling velocity is related to the particle size,
sediment concentration, salinity, and turbulence intensity. Thorn (1981) and others
established several empirical formulas for the settling velocity of the flocs. Generally, the
settling velocity of the flocs can be determined by (Wu and Wang, 2004b)

@y
. = KdKSKsaKt (24)

Wyso
where @, is the representative settling velocity of the flocs; @5, is the settling velocity of
single particles, corresponding to the median size dy, of the sediment mixture; K,, K, K_,
and K, are the correction factors accounting for the influences of sediment size, sediment

concentration, salinity, and turbulence intensity, respectively.
Cohesive sediment is either eroded from the bed in particles (surface erosion) or in layers
(mass erosion). The surface erosion occurs when the applied shear stress exceeds a certain
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critical shear stress, and mass erosion happens when the applied shear stress exceeds the
bulk strength of the sediment. Partheniades (1965) found that the surface erosion rate is a
linear function of the dimensionless excess shear stress, while Raudkivi and Hutchison
(1974) observed that it is exponentially proportional to the dimensionless excess shear
stress. Mehta (1986) clarified that the exponential relation is valid for partly consolidated
beds and the linear relationship is valid for fully consolidated beds. Partheniades’ (1965)
erosion relation reads

T

E, = M[Tb e j (25)

where M is a coefficient related to the material properties, such as mineral composition,
organic material, salinity, etc.; and r, is the critical shear stress for erosion, which depends

on the mud dry density, organic material, temperature, pH value, the Sodium Absorption
Ratio (SAR), etc.

Krone (1962) and Mehta and Partheniades (1975) investigated the deposition process of
fine sediment, and proposed formulas to determine the deposition rate. Mehta and
Partheniades’ (1975) formula reads

0 (Ty > Tpg max )
Db = 6lma)s,mc (de,min < z-b < de,max) (26)
s,mC (Tb < de,min)

where 7, is the bed shear stress; 7, .. is the critical bed shear stress below which all
sediment are deposited on the bed; 7,, .. is the critical bed shear stress above which all

sediment remain in suspension yielding a zero deposition rate; «,, is a coefficient between
0 and 1 related to the bed shear stress, and is approximated as
a,=1- (Tb ~ Tpd. min )/(de,max - de,min)'

Once the fine sediment particles deposit on the bed, consolidation will occur. The detailed
consolidation process can be described by Gibson et al.’s (1967) theory. The model based on
this theory calculates the evolution of the void ratio of a soil layer using a 1-D unsteady
differential equation in the vertical direction. This approach is usually time-consuming.
Therefore, a simpler approach is often used, which uses empirical functions, such as Lane and
Koelzer’s (1953), to determine the evolution of dry density. The decrease in bed elevation due
to the consolidation is determined by

dH __H dp,
dt p, dt
where H is the bed thickness; p, is the mean dry density of the bed.

27)

3.6 Local Scour near In-stream Structures

The local scour near in-stream structures such as bridge piers, abutments and spur-dykes is
complex and difficult to model. The three-dimensional flow features, such as the downward
flow, the localized pressure gradient, and horseshoe and wake vortices, are all important in
the development of local scour. At the present, the highly complex, three-dimensional near-
field flows can be calculated reasonably well with advanced turbulence models. However,
how to quantify the local sediment transport mechanism near the structures is still a problem
requiring further investigation.

To facilitate the design of in-stream structures, many empirical formulas, such as the HEC-
18 (FHWA, 1995) equation for bridge pier scour, Froehlich’s (FHWA, 1995) equation for
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bridge abutment scour, etc., have been developed and used with 1-D, 2-D and even 3-D flow
models to predict the maximum scour depth at the structures.

To simulate the details of the erosion process around in-stream structures, especially under
unsteady flow conditions, the sediment transport and bed morphology models have been
developed. The governing equations are the same as those for the general sediment transport.
The difference is in the sediment transport capacity formula. In the case of local scour
simulation, one should select the formula that can account for the effect of downward flow,
localized pressure gradient and fluctuations, vorticity, turbulence intensity, etc. Dou (1997),
Jia et al. (2001) and Wu and Wang (2004c) have attempted to extend the capability of general
sediment transport formulas for the local scour simulation near bridge piers, abutments and
spur-dykes as well as the headcut. However, these empirical formulas need to be validated by
more laboratory experiments and field measurements.

3.7 Sediment Transport on Steep Slopes

For the channels with steep slopes, the effect of the gravity on sediment transport can not
be ignored. To consider the effect of the gravity on the sediment transport capacity expressed
as q,, = f(z,/7,), one may use one of the two approaches. Here, 7, is the bed shear stress,

and 7, is the critical shear stress for incipient motion of bed material. One approach is to
correct the critical shear stress 7, using the method of Brooks (1963) or van Rijn (1989). A
disadvantage of this approach is that when the bed angle is equal to the repose angle, one
must determine an accurate value for the critical shear stress so that the realistic g,, is not
infinite. Another approach is to add the streamwise component of the gravity force to the bed
shear stress 7, without modifying 7, (Wu, 2004)
T,, =T, + 4,7, sin@/sing (28)

where 7,, is the effective tractive force; ¢ is the bed angle with the horizontal, with positive
values denoting downslope bed; ¢ is the repose angle; and 4, is a coefficient related to flow

and sediment conditions as well as the bed slope (Wu, 2004). Eq. (28) can be used to modify
many sediment transport formulas, such as van Rijn’s (1989) formula and Wu et al.’s (2000)
formula,

The effect of the gravity on the direction of bed-load transport has been investigated by
Engelund (1974), Sekine and Parker (1992), and Wu (2004). To consider this, the parameters
a,, and @, in Eq. (9) are replaced by ¢, , and «,,, which are determined as

X
Ape _ ATy + A T, SINQ, [SING 29)
@, @,T,+A 1, sing, sing

where ¢ and ¢, are the bed angles along x- and y-directions.

3.8 Effect of Secondary Flow on Sediment Transport in Curved Bends

Helical (secondary) motions in curved channels play an important role in the evolution of
channel morphology, inducing deposition along the inner bank and erosion along the outer
bank. This phenomenon can be simulated by a three-dimensional model, which has been
carried out by Wu et al. (2000) and others. However, for obtaining results quickly, a number
of investigators, e.g., Flokstra (1977), Jin and Steffler (1993), and Wu and Wang (2004d)
have modified the depth-averaged 2-D models to include the effect of the secondary helical
motions. The dispersion terms in Egs. (6)-(8) can be used to serve this purpose. Jin and
Steffler (1993) calculated these terms by solving two extra equations that are obtained by
integrating the 3-D horizontal moment-of-momentum equations over the depth. Flokstra
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(1977) and Wu and Wang (2004d) determined these terms by using the following simple
algebraic equation for the vertical distribution of the helical flow

u,=U, + bsl(zh—z = 1) (30)

and the Rouse distribution or Lane-Kalinske distribution for the suspended-load concentration
along the depth. In Eq. (30), u, is the local velocity in the cross-stream direction; b, is the

coefficient with a value of about 6.0; U, is the depth-averaged velocity in the cross-stream
direction; / is the intensity of helical flow. Theoretically, / =U h/r in the channel centerline

(Rozovskii, 1957). Here, r is the local radius of curvature. For the entire channel bend, de
Vriend (1981) proposed a differential transport equation to determine the /. Wu and Wang
(2004d) simplified this differential equation into an algebraic formula for the helical flow
intensity in the fully developed region.

For the effect of the helical flow on the bed-load transport direction, the methods proposed
by Engelund (1974) and Odgaard (1981) can be used.

3.9 Bank Erosion and Mass Failure

Bank erosion is the main cause of channel widening and meandering. To realistically model
the morphological evolution of channels with movable banks, both bed and bank changes
should be simulated (Duan et al., 2001; Wu and Vieira, 2002). Usually, for non-cohesive
banks, the bank retreat occurs gradually when the slope angle is larger than the repose angle.
For cohesive banks, bank material collapse in the form of mass failure, a discontinuous
phenomenon. The bank instability and mass failures may be caused by bed degradation and
lateral fluvial erosion at bank toes as well as the pore pressure change in the bank soil.
Arulanandan et al. (1980) established an empirical relationship for calculating the erosion of
bank toes. Osman and Thorne (1988) proposed an algorithm to analyze the stability of banks,
with the safety factor being defined as the ratio of the resistance and driving forces for the
failure. Simon et al. (2000) proposed a more sophisticated bank stability and toe erosion
model, which considers wedge-shaped bank failures with several distinct bank material layers
and user defined bank geometry. This model is able to incorporate root reinforcement and
surcharge effects of six vegetation species, including willows, grasses and large trees, and
simulate saturated and unsaturated soil strength considering the effect of pore-water pressure.

4 NUMERICAL METHODS

4.1 Discreization of Governing Equations

The numerical methods used in the discretization of flow and sediment transport
equations include the finite element model, finite difference model, finite volume model,
finite analytical model, efficient element method, etc. The basic information about these
methods is available readily. In the case of the efficient element method, one can refer to
Wang and Hu (1992).

The flow and sediment transport equations of the convection-diffusion type. The diffusion
terms are usually discretized by using the central difference scheme or the similar ones.
However, the convection terms have to be discretized by using the upwind schemes. The
simplest upwind scheme is the first-order upwind scheme, which is very stable but has
strong numerical diffusion. The often adopted numerical schemes with upwind features
and acceptable numerical diffusion include the hybrid upwind/central scheme, exponential
difference scheme (Spalding, 1972), the finite analytical scheme, and the upwind
interpolation scheme (Wang and Hu, 1992). This group schemes usually have the second-
order accuracy or less. Other upwind schemes, such as QUICK scheme (Leonard, 1979),
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have higher than second-order accuracy but may encounter numerical oscillation. Many
limiters have been developed to control the potential numerical oscillation existed in these
high-order upwind schemes.

For unsteady problems, the time derivative terms can be discretized by using either an
explicit scheme or an implicit scheme. The explicit scheme results in simple algebraic
equations and computer program. However, the time step in the explicit scheme is usually
limited by the CFL condition, which means the Courant number should be less than 1. To
allow a larger time step, the implicit scheme should be adopted. The overall efficiency of the
implicit solution procedure depends on what kind of iteration solver is used. This will be
discussed in the next section.

4.2 Iterative Solution of Algebraic Equations

Because the hydrodynamic problems are nonlinear, iterative methods are often used,
especially for the solution of multidimensional problems. The simplest iteration methods are
Jacobi method and Gauss-Seidel method. However, the convergence speed of these two
methods is usually slow. To speed up the convergence, the Thomas algorithm and the
Alternating Direction Implicit (ADI) iterative method are widely used.

Another iteration method of even faster convergence is the Strongly Implicit Procedure
(SIP) proposed by Stone (1968). The idea is to approximately factorize the algebraic
equations to two subsystems with a lower triangular matrix and an upper triangular matrix,
and then solve the two subsystems separately by a direct method.

Other iteration methods include Newton’s method, Conjugate Gradient method,
Biconjugate Gradients method, multigrid method, etc. In addition, the relaxation method is
often adopted to enhance the efficiency of iteration. Over- and under-relaxation methods can
accelerate or slow down the convergence speed.

4.3 NUMERICAL SOLUTIONS OF FREE-SURFACE FLOW

4.3.1 One-Dimensional Flows

For 1-D steady or quasi-steady flow model, the governing equation is the energy equation,
which can be solved by the standard step method. For 1-D unsteady model, the most widely
used numerical scheme is Preismann’s four-point implicit scheme. In a single channel or in a
dendritic channel network, the resulting algebraic equations can be used by applying Thomas
algorithm. In the case of looped channel networks, the method proposed by Cunge et al.
(1980) is suggested.

The Preissman’s scheme may encounter instability in the case of transcritical flow.
Therefore, it is usually limited in the range of subcritical flow. For the flow mixed with
subcritical flow and supercritical flow, the Riemann solver and TVD schemes are often used.
Most recently, Ying et al. (2003) proposed an upwind scheme to determine the fluxes in the
1-D St. Venant equations, which can be used to solve the mixed flow, dam break flow, etc.
4.3.2 Two-Dimensional Flows

In the depth-averaged 2-D shallow water Egs. (5)-(7), the water depth appears in the depth-
integrated continuity Eq. (5), providing a strong linkage between velocity and pressure (water
level). Usually, upwind schemes are needed to discretize the convection terms in the
momentum equations and even the spatial derivative terms in the continuity equations (i.e.,
upwinding flux). When the central difference scheme is used to discretize these terms,
artificial dissipations or TVD limiters are often used to suppress the numerical oscillations.

Other solution methods for the Navier-Stokes equations can also be used for the 2-D
shallow water Egs.(5)-(7). For example, the Rhie and Chow’s (1983) momentum interpolation
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technique on non-staggered grid can also be used (Wu, 2004). Jia and Wang (1999) adopt the
correction-type method to solve Egs. (5)-(7).
4.3.3 Three-Dimensional Flows

In the full 3-D Navier-Stokes Egs. (12) and (13), the momentum equations link the velocity
to the pressure gradient, but the continuity equation does not directly link to the pressure and
is just an additional constraint on the velocity field. Owing to such a weak linkage, the
convergence and stability of a numerical solution of the Navier-Stokes equations depend
largely on how the pressure gradient and velocity in these equations are evaluated. Storing the
variables at the geometric center of the control volume coupled with a linear interpolation for
internodal variation usually leads to non-physical node-to-node oscillation. One approach to
avoid this numerical oscillation is to use the staggered grid adopted in the MAC method, the
projection method and the SIMPLE algorithm. Another approach is to use the momentum
interpolation technique proposed by Rhie and Chow (1983) based on the collocated (non-
staggered) grid.

In 3-D simulations of river flow, the computational domain is movable due to the free-
surface and bed-surface variation. One approach to handle this problem is ignoring the free-
surface variation and treating the free-surface as a rigid lid boundary. The location of the rigid
lid can be estimated by a 1-D or 2-D model. This approach is simple but only applicable to a
short reach where the water surface elevation varies gently. Another approach is the volume-
tracking method, which uses a fixed grid, and defines the shape and elevation of the water
surface through the volume of fluid at each grid cell. The MAC and VOF algorithms (Hirt and
Nichols, 1981) are examples of this group. The third approach is the surface-tracking method,
which uses the moving grid that follows the free-surface change. At least one grid line is
along the free surface so that the surface shape is approximately matched. In the surface-
tracking method, the location of water surface is usually determined by the free-surface
kinematic condition, the depth-integrated continuity equation, or the 2-D Poisson equation
derived by Wu et al. (2000) from the 2-D depth-averaged momentum equations.

In the 3-D shallow water Egs. (14)-(16), the pressure (water level) field becomes a 2-D
quantity, but the weak linkage between the pressure and velocity still exists. Therefore, most
of the current 3-D shallow water flow models adopt the staggered grid. Taking advantage of
the 2-D feature of pressure, Sheng (1983) suggested the splitting of internal module and
external module. The external module is the depth-averaged 2-D model, which handles the
fast barotropic dynamics and computes the water level field. The internal module handles the
slower baroclinic vertical flow structure by solving the 3-D equations. Casulli and Cheng
(1992) proposed an algorithm that uses an implicit scheme in the vertical direction and a
semi-implicit scheme in the horizontal direction. They derived a discrete 2-D Poisson
equation to determine the water level.

4.4 Numerical Solutions of Sediment Transport

Although the physical interactions between the water and sediment always exist, the
majority of the early sediment transport models have decoupled the flow and sediment
calculations. Recently, intensive efforts have been made toward the relaxation of the limit in
time and space steps and the extension of the applicability of the fully decoupled model.
Recent research has found out that the coupled model is more stable (Holly and Rahuel,
1990; Cao et al., 2002).

However, the nonlinearity of flow problem may reduce the efficiency of solving the flow
and sediment transport equations simultaneously. In addition, the sediment in the wvast
majority of rivers has very low concentration, and the time scales of flow and channel
morphodynamic processes can be significantly different, especially in the case where bed load
is dominant. Therefore, fully coupling the flow and sediment transport are usually not cost-
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effective. Wu and Vieira (2002) adopted a “semi-coupling” procedure, in which the flow
calculation is decoupled from sediment calculation, but the three components of the
sediment module (sediment transport, bed change and bed material sorting) are solved in a
coupled fashion. This semi-coupling procedure has been found to be very stable and
efficient computationally.

5 DOMAIN DECOMPOSITION AND MODEL INTEGRATION

Many problems in river engineering exhibit multiple length and time scales in the form of
velocity, concentration, geometric irregularities and complexities. To handle these
characteristics, domain decomposition and model integration are usually adopted to allow
models having different dimensions, different physical processes, and different grid shapes
and densities in different subdomains. These include the multiblock algorithm based on the
domain decomposition, the coupling of 1-D, 2-D and 3-D models, the integration of channel
and watershed models, and the hybrid physical and computational modeling.

5.1 Multiblock Method

The multiblock method divides the solution domain into several subdomains (blocks), and
generates a structured mesh for each individual subdomain independently. The governing
equations are solved bock by block. During the solution process, the information updated at
each time step or iteration step needs to be transferred between the blocks. Therefore, the key
issues in the multiblock method are the interface treatment and information exchange
between blocks, which affect the solution accuracy and computation efficiency. For a
complex problem, the multiblock method needs less computer memory and has more
flexibility of grid generation than the single-block method. The multiblock algorithm is
often used with parallel computation.

5.2 Coupling of 1-D, 2-D and 3-D Models

In the investigation of River Engineering problems, such as navigation, water intaking,
river restoration, structure protection, etc., one needs to know the detailed flow, sediment
transport and channel evolution, which should be simulated using a 2-D model or 3-D model.
However, if a long river reach is studied over a long time period, it may be more cost-
effective to use an integrated 1-D, 2-D and/or 3-D model, e.g. McAnally et al. (1986) and Wu
and Li (1992). The basic idea is dividing the whole study domain into several subdomains
(reaches), and applying the 1-D model in less important subdomains with simple geometry
and the 2-D model and/or 3-D model in more important subdomains with complex geometry.
The concept of the coupling of 1-D, 2-D and 3-D models is illustrated in Fig. 2 for a generic

river system.

Depth-Averaged Bridge

Width-Averaged
\ 2-D Model

Reservoir 2
Main Channel &[Zla,}

Fig. 2 Concept of Coupled 1-D, 2-D and 2-D Models
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The solution schemes in each subdomain are the same as those discussed previously. On
the interfaces between subdomains the flow flux, momentum and energy as well as sediment
flux, bed change and bed material gradation should be conserved. The maximum computation
time steps allowed by numerical stability in 1-D, 2-D and 3-D models are usually different.
Therefore, the overall time step should be carefully selected.

5.3 Integration of Channel and Watershed M odels

In traditional approach, the watershed and channel processes have been simulated
separately. However, because they are interrelated, watershed and channel modeling should
be integrated for a successful watershed-scale study. In the integrated system, the two parts
can complement each other to produce better predictions.

As an example, the integration of the channel network model CCHEID and the watershed
models AGNPS and SWAT (Wu and Vieira, 2002) is used to illustrate the concepts and
methodologies. This integrated watershed-channel modeling system includes three
components: landscape analysis, watershed modeling, and channel simulation, as shown Fig.3.
The landscape analysis program is used to extract the channel network and its corresponding
subcatchments based on the elevation data from a Digital Elevation Model. The watershed
models compute daily runoff and sediment yield for each subcatchment. The channel model
simulates the flow and sediment routing in the channel network using the boundary conditions
provided by the watershed models.
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Fig. 3 Integration of Channel and Watershed Models

5.4 Hybrid Physical and Computational M odeling

As two major tools in river engineering analysis, both the physical (scale) modeling and
computational modeling have advantages and disadvantages. The physical modeling is
directly visible and measurable quantitatively, but more expensive and time-consuming. The
computational modeling is less costly and requires less time to carry out. Due to this fact, the
physical modeling and computational modeling are often combined in the investigation of
very important engineering problems. This approach was called the hybrid physical and
computational modelling (Mc Anally et al., 1986).

Several ways have been adopted in the combination of both models. One typical approach
is conducting physical model to study several scenarios for a real-life problem and collect
measurement data to calibrate the computational model, and then extending the calibrated
computational model to investigate more scenarios for this problem.
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Another approach is using the computational model, especially the 1-D model or 2-D
model, to investigate the effect of a hydraulic project in whole domain, and then using the
physical model for a detailed study of local problems of critical importance. The
computational model provides boundary conditions for the physical model. This approach has
been adopted in the investigation of the sedimentation problems induced by the well-known
Three Gorge Project in the Yangtze River.

6 MODEL VERIFICATION, VALIDATION AND APPLICATION

The common practice of applications of numerical models to the investigation of river
sedimentation problems as well as other problems relies heavily on the calibration of model
parameters using the measured data taken from the site under investigation. If the model
being used has no major flaws, the researchers and engineers could usually have the values of
the parameters adjusted or so-called calibrated so that the numerical model results can still
approximately match the measurements. This has been claimed as validation of the numerical
model. As a simple example, a river reach with highly irregular planform, varying cross-
section shape, slope, bed and bank roughness, vegetation effect, etc. along the channel is
modeled by assuming that the channel reach is a connected system of straight reaches
(numerical elements) with uniform cross-section, slope, roughness, and vegetation effect. The
users of the model could adjust the uniform bed roughness either along each element or even
the entire reach to get the best approximate agreement between the modeled surface elevation
profile and that measured. Once this is done the model is declared as validated. Quite often
the so-called calibrated bed-roughness can be one order of magnitude higher than the one
measured. This is due to the fact that the model user is using the bed roughness to include
all the unrealistic assumptions of the model to obtain the agreement between simulated
and measured water surface profiles. Even the model user can claim that the simulated
water surface elevation along the river reach is validated by the measurements, one can
not be sure that the discharge, velocity and sediment transport rate can be agreed also with
their corresponding measurements.

More recently, the methodology of parametric identification has been advanced to the
utilization of the multi-variable optimization methods. Its accuracy and reliability are still
doubtful, especially due to the fact that the measured data are insufficient and incomplete in
spatial and temporal resolutions. Even if one has a relatively large amount of data of a study
site, the calibrated parameters may validate the model results of this specific site over the time
period when the data was taken, one can not be sure that the results are valid at this site all the
time, nor they are valid at a site outside the reach where the data was taken.

Furthermore, the approximate agreement between model results and measured data by
calibrating the parameter does not guarantee that the model is correct mathematically.
Therefore, it is of paramount importance to have all numerical models verified and validated
comprehensively. A 3D Free Surface Flow Model Verification and Validation Monograph is
to be published by a Task Committee of the same title chaired by Wang (2004). Its
comprehensive procedure is briefly given below, which can also be applied to the
development of sediment transport model. This verification and validation procedure consists
of three steps.

Step 1: Verification by Analytic Solutions:

A numerical model may have problems in mathematics and physics. The verification
and validation procedure developed by the ASCE Task Committee is to insure that a
numerical model shall solve the mathematical equations correctly and predict the physical
processes adequately and realistically. The verification of correct mathematics can be
achieved by testing the model’s results with analytic solutions. In this test, the numerical
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and analytical solutions are obtained from the same equations with same boundary and
initial conditions and same values of all parameters. Therefore, the numerical solution
should converge to the analytical solution in a grid refining process. Any discrepancy must
have come from the mathematical derivation, numerical solution technique, computer
coding and calculation algorithm. This step can not only prove consistency and
convergence, but also determine the magnitude of model’s numerical error quantitatively.
Therefore, every model must be verified to have the correct mathematics first, before
concerning how accurate it can predict the physical processes. Recent development in
manufacturing nonlinear analytic solutions has greatly broadened the effectiveness of this
verification step to test the nonlinear cases.

Step 2: Validation by Laboratory Experiments:

The current state of the technology and the constraint of economics have severely limited
our ability to measure all forcings acting on a natural system and the responses of all the state
variables of the system with sufficient spatial and temporal resolutions. Therefore, the
validation of a numerical model’s capability in prediction of basic physical mechanisms and
realistic natural processes are best be carried out in two steps by using laboratory experiments
and field measurements respectively.

The laboratory experiments are conducted in controlled environments, smaller in scale,
less costly to measure more properties at finer resolution of the measuring points, and their
simplified testing conditions are close to the numerical model than those of natural systems.
Therefore, the comparison between the measured values with numerical solutions is more
meaningful. Because of the beauty of science it has proven that the simplest physical
processes are the fundamental modes of the physical system, so that the validation of this step
can confirm the model’s capability in predicting the most fundamental physical processes,
though they are simplified. Another advantage of these tests is that there are no scaling
distortion effects.

Step 3: Validation by Field Measurements:

Numerical models pass the first two steps may not be appreciated completely by
practitioners. They need proof that the model has the capability of predicting the behavior of
natural phenomena, at least approximately. Therefore, before the application of a model to
the investigation of a real-life problem in nature, it has to be tested by field data. One
needs to be aware, however, that the application of a model to each real-life problem has
to have its parameters representing the unique characteristics of the study site determined
by data measured at the site. This is called site specific calibration. In ASCE’s monograph
(to be published shortly), the Task Committee suggested that the user can not use all
measured data in calibration. Instead at least half or more data should be kept for
validation to confirm whether and how close or adequate the model can predict the natural
phenomena.

One should understand, however, that the conditions considered by the numerical model
have included several simplifying assumptions or omitted some complicated forcing of
secondary importance. Therefore, one should not use this step to judge a model’s accuracy
quantitatively by comparing the simulation to the measurement at a point and a particular
time. Normally, more measured field data available leads to more reliable model predictions.
The most important contribution of this step is to predict the trend of spatial and temporal
variations of a real-life system in nature correctly and realistically.

Because the sediment transport model has more physical parameters than the flow model,
such as sediment transport capacity, non-equilibrium adaptation length, eddy diffusivity, etc.,
and they most likely vary in different river reaches in different seasons, the flow model should
pass the above verification and validation tests first, and then, the sediment transport model
should go through a similar procedure.
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7 EXAMPLESOF APPLICATIONS

To better utilize the limit space of this paper, representative examples are selected to
highlight the significant advances of the computational modeling in river engineering research
rather than a comprehensive summary. Detailed information can be easily obtained from
numerous publications including those cited in this paper.

7.1 Casel: Integrated Watershed-Channel Simulation in Goodwin Creek

The Goodwin Creek watershed in Mississippi is the only watershed in the USA, which has
been monitored continuously since 1978. Fig. 4(a) shows the comparison of the calculated
and measured thalweg changes of the main channel from 1978 to 1992. Fig. 4(b) shows the
comparison of the calculated and measured annual sediment yields at the watershed outlet.
The reasonable agreement proves that computational model, CCHEID, is capable of
simulating long-term morphological changes of a stream.
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(a) Thalweg Changes along the Main Stream; (b) Sediment Yields at Outlet
Fig. 4 Sediment Transport in Goodwin Creek

7.2 Case2: Local Scour around Bridge Piersand Abutments
The results shown in Fig. 5 proves that CCHE3D model has been successfully applied to
simulate the development of local scours around bridge pier and bridge abutment (Dou, 1997).

7.3 Case 3: Channel Widening and M eandering Simulation

Figs. 6 and 7 demonstrate the capabilities of computational models in simulating the river
widening and meandering due to bank erosions, bed aggradation and degradation. Both
CCHE2D and CCHE3D have been applied to this study.

ferlyh
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Fig. 5 Local Scours around a Bridge Pier and an Abutment

89



I% |
?%

Fig. 6 Channel Widening Fig. 7 Channel Meandering
8 CONCLUDING SUMMARY

River sedimentation and morphological modeling has been advanced significantly over the
past two decades. Mandated by the U. S. Congress, the National Center for Computational
Hydroscience and Engineering (NCCHE) has been developing the numerical-empirical
models for simulating soil erosion and sediment transport since 1989. Not only a suite of
basic simulation models in the areas of free-surface flow, sediment transport, channel
bed/bank erosion, channel meandering, local scours, dam-break and flood flows, water quality,
ecological impact, environmental engineering, etc., have been developed, but also the
forefront of the state of the art of the modeling has been continuously advanced ever since.
Advances of modeling methodology of NCCHE and other institutions have been summarized
in the previous sections. At the present, the computational models have been widely adopted
as alternative research, engineering analysis and design tools. Quite often, they have been the
tools of choice by both researchers and practitioners, because of the constraints of available
time and funds. From the examples presented in the last section, it is seen that the capabilities
of computational simulation models have both broadened and strengthened to the extent
beyond the belief of many experts in the field a few years ago.

At the present state of the art, the three-dimensional models can simulate the detailed flow
characteristics of complex situation, e.g. the turbulent flow in a highly irregular river
bendway with spur dikes and submerged weirs, the unsteady flows at bridge crossing and
the local scour development in time around bridge piers and abutments, etc. The two-
dimensional models have successfully applied to the predictions of flood flows due to over
topping of river banks, dam break or levee breach caused by heavy rain storms, the
selection of designs for river restoration projects by a variety of techniques including the
utilization of vegetations and hydraulic structures in stream or along the banks, etc. The
one-dimensional models are being used in assessing long-term sediment and/or pollutant
transport in streams and channel networks, predicting the total maximum daily loads in a
catchment or watershed, evaluating the effectiveness of erosion control structures from
long-term point of view, and many other cases. The integrated multi-dimensional models
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having 1-D, 2-D and 3-D models are becoming the predictive tools in decision support
systems, which are to have wider and wider applications in policy making, management
planning and engineering designs to select the best management practices and the optimal
design to satisfy all constraints of environment, ecology, political/legal systems,
social/cultural concerns, etc. There is no doubt that the computational modeling is to be
the preferred tool of the 21 century in River Engineering. The important areas for future
developments in the river sedimentation modelling are recommended below:

One of the most important needs in sediment transport modeling is the betterment of
understanding of sediment transport theory, especially the mechanism quantifying the
dynamics of interactions between flowing water, sediment particles, and/or bed/bank
materials. The advances in this area shall reduce the empiricism needed in the computational
model, and thus enhance the models’ completeness, effectiveness and efficiency.

The next urgent need is to intensify the laboratory experiments and field measurements on
both mechanisms and natural phenomena of sediment transport processes in rivers. It is highly
desirable to carry out these researches collaboratively with computational simulations, so that
the large amount of data collected can be used by both physical and numerical modelers.
Furthermore, the fully validated numerical models can be used to generate large amount of
knowledge without having to run a large number of laboratory experiments and collect more
field data than the amount absolutely necessary. The information collected can improve not
only the accuracy and reliability of empirical functions that can be used immediately by the
numerical modelers and practice engineers, but also by the academician to improve the theory
and thus enhance our basic understanding.

Without any doubt, another future need in computational models for river sedimentation is
to further upgrade the models. The newly proved sediment transport theories, the newly found
empirical functions, the newly developed numerical solution methods, etc. should all be
added to the computational models. These shall enhance the models’ accuracy and reliability
in predicting sediment transport capacity, sediment diffusivity, non-equilibrium adaptation
length, movable bed roughness, near-bed sediment exchange mechanism, etc. Furthermore,
the utilization of newly developed information technologies, such as GIS, GUI and software
library, can greatly enhance the convenience in models’ usage and broaden their applications,
especially to the urgent real-life problems of our society.

With the advances of science and engineering in all fields, the solution of a problem in one
discipline needs to consider its effects and impacts on other disciplines, from short- and long-
term point view. It is also true that to solve a problem at one location, one must consider its
effects not only on the neighboring area, but also on the entire watershed. The International
Hydrological Program’s International Sedimentation Initiative and the U. S. Army Corp of
Engineers are respectively studying the need of consideration of global and regional impact
when a sedimentation project is planned. Therefore, to design an engineering solution of a
river sedimentation problem, one must integrate several models from other disciplines, such
as ecosystem model, water quality model, pollutant transport model, even economic,
management, social systems models, etc. The integration of all of these models together with
all relevant knowledge and information databases into one comprehensive software package
as a decision support system to be used by engineers, managers, administrators and policy
makers. This decision support system shall be widely adopted in the future.
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